Injection-molded optical components are used often for commercial illumination systems. This paper discusses methods of how to model the tolerance aspects of such components. Tolerance aspects include surface roughness, source-to-optic position and rotation errors, and surface slope errors. It is noted that all of these tolerance investigations cannot correctly account for errors in the injection-mold process. A method to model deformations induced in the injection-mold process is proposed. The method is based on the laser scan of an injection-molded part, which allows the rebuilding of the surface from the point cloud. This method, while quite accurate, is time consuming, so a second algorithm based upon approximation with a Harvey scatter model is developed that takes over an order of magnitude less in time. It is shown that the approximate model provides results within a few percent if comparisons are done in the far field. Near-field results require the rebuild method that uses the measured point cloud. Additionally, illumination systems comprising multiple interactions with the component surface (e.g., lightpipes) can use the approximate Harvey model.