Fusion of classifiers for predicting protein-protein interactions

被引:38
|
作者
Nanni, L [1 ]
机构
[1] Univ Bologna, DEIS, IEIIT, CNR, I-40136 Bologna, Italy
关键词
protein-protein interactions; machine learning; fusion of classifiers;
D O I
10.1016/j.neucom.2005.03.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction of protein-protein interaction is a difficult and an important problem in biology. In this paper, we describe a very general method for predicting protein-protein interactions. The interaction mining approach is demonstrated by building a learning system based on experimentally validated protein-protein interactions in the human gastric bacterium Helicobacter pylori. We show that combining linear discriminant classifier and cloud points we obtain an error rate lower than previously published in the literature. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [41] Predicting Protein-Protein Interactions Using Full Bayesian Network
    Li, Hui
    Liu, Chunmei
    Burge, Legand
    Ko, Kyung Dae
    Southerland, William
    2012 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2012,
  • [42] Predicting Protein-Protein Interactions from the Molecular to the Proteome Level
    Keskin, Ozlem
    Tuncbag, Nurcan
    Gursoy, Attila
    CHEMICAL REVIEWS, 2016, 116 (08) : 4884 - 4909
  • [43] Transferring network topological knowledge for predicting protein-protein interactions
    Xu, Qian
    Xiang, Evan Wei
    Yang, Qiang
    PROTEOMICS, 2011, 11 (19) : 3818 - 3825
  • [44] Predicting nsSNPs that Disrupt Protein-Protein Interactions Using Docking
    Goodacre, Norman
    Edwards, Nathan
    Danielsen, Mark
    Uetz, Peter
    Wu, Cathy
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (05) : 1082 - 1093
  • [45] Predicting the Likelihood of Molecules to Act as Modulators of Protein-Protein Interactions
    Wolk, Omri
    Goldblum, Amiram
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 63 (01) : 126 - 137
  • [46] Predicting Protein-Protein Interactions Using BiGGER: Case Studies
    Almeida, Rui M.
    Dell'Acqua, Simone
    Krippahl, Ludwig
    Moura, Jose J. G.
    Pauleta, Sofia R.
    MOLECULES, 2016, 21 (08)
  • [47] Predicting protein-protein interactions based on BP neural network
    Ma, Zhiqiang
    Zhou, Chunguang
    Lu, Linying
    Ma, Yanan
    Sun, Pingping
    Cui, Ying
    2007 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, PROCEEDINGS, 2007, : 3 - +
  • [48] CollaPPI: A Collaborative Learning Framework for Predicting Protein-Protein Interactions
    Ma, Wenjian
    Bi, Xiangpeng
    Jiang, Huasen
    Zhang, Shugang
    Wei, Zhiqiang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 3167 - 3177
  • [49] Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions
    Roy, Sushmita
    Martinez, Diego
    Platero, Harriett
    Lane, Terran
    Werner-Washburne, Margaret
    PLOS ONE, 2009, 4 (11):
  • [50] Unraveling the role of physicochemical differences in predicting protein-protein interactions
    Teimouri, Hamid
    Medvedeva, Angela
    Kolomeisky, Anatoly B.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (04):