VERTEX VULNERABILITY PARAMETER OF GEAR GRAPHS

被引:16
作者
Aytac, Aysun [1 ]
Turaci, Tufan [1 ]
机构
[1] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
Connectivity; network design and communication; average lower independence number; gear graph; INDEPENDENT DOMINATION;
D O I
10.1142/S0129054111008635
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a vertex v of a graph G = (V, E), the independent domination number (also called the lower independence number) i(v) (G) of G relative to v is the minimum cardinality of a maximal independent set in G that contains v. The average lower independence number of G is i(av) (G) = 1 /|V(G)| Sigma(v epsilon V(G)) i(v) (G). In this paper, this parameter is defined and examined, also the average lower independence number of gear graphs is considered. Then, an algorithm for the average lower independence number of any graph is offered
引用
收藏
页码:1187 / 1195
页数:9
相关论文
共 11 条
[1]  
AYTAC A, 2009, B SOC MATH BANJA LUK, V16, P11
[2]  
BAREFOOT C A, 1987, J. Comb. Math. Comb. Comput., V1, P13
[3]   On average lower independence and domination numbers in graphs [J].
Blidia, M ;
Chellali, M ;
Maffray, F .
DISCRETE MATHEMATICS, 2005, 295 (1-3) :1-11
[4]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[5]  
Brandstdt A., 1999, Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications
[6]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[7]  
HARARY F, 1989, DUSTANCE GRAPHS
[8]   INDEPENDENT DOMINATION IN REGULAR GRAPHS [J].
HAVILAND, J .
DISCRETE MATHEMATICS, 1995, 143 (1-3) :275-280
[9]  
Henning MA, 2004, ARS COMBINATORIA, V71, P305
[10]  
RONALD EP, 1976, DISCRETE MATH STRUCT