Relative singularity categories I: Auslander resolutions

被引:31
作者
Kalck, Martin [1 ]
Yang, Dong [2 ]
机构
[1] Maxwell Inst, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Isolated Gorenstein singularity; Non-commutative resolution; Singularity category; Relative singularity category; dg Auslander algebra; FINITE DIMENSIONAL ALGEBRAS; COHEN-MACAULAY MODULES; TRIANGULATED CATEGORIES; T-STRUCTURES; K-THEORY; EQUIVALENCES; QUIVERS; LOCALIZATION; GORENSTEIN;
D O I
10.1016/j.aim.2016.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an isolated Gorenstein singularity with a non commutative resolution A= End(R) (R circle plus M). In this paper, we show that the relative singularity category Delta(R)(A) of A has a number of pleasant properties, such as being Hom-finite. Moreover, it determines the classical singularity category D-sg(R) of Buchweitz and Orlov as a certain canonical quotient category. If R has finite CM type, which includes for example Kleinian singularities, then we show the much more surprising result that D-sg(R) determines Delta(R)(Aus(R)), where Aus(R) is the corresponding Auslander algebra. The proofs of these results use dg algebras, A. Koszul duality, and the new concept of dg Auslander algebras, which may be of independent interest. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:973 / 1021
页数:49
相关论文
共 96 条
[51]   A NEW TRIANGULATED CATEGORY FOR RATIONAL SURFACE SINGULARITIES [J].
Iyama, Osamu ;
Wemyss, Michael .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (01) :325-341
[52]   SUR LES ORDRES COMMUTATIFS AVEC UN NOMBRE FINI DE RESEAUX INDECOMPOSABLES [J].
JACOBINS.H .
ACTA MATHEMATICA UPPSALA, 1967, 118 (1-2) :1-&
[53]  
Kadeivili T.V., 1980, Usp. Mat. Nauk, V35, P183
[54]  
Kaick M., RELATIVE SINGU UNPUB
[55]   Frobenius categories, Gorenstein algebras and rational surface singularities [J].
Kalck, Martin ;
Iyama, Osamu ;
Wemyss, Michael ;
Yang, Dong .
COMPOSITIO MATHEMATICA, 2015, 151 (03) :502-534
[56]   Kleinian singularities, derived categories and Hall algebras [J].
Kapranov, M ;
Vasserot, E .
MATHEMATISCHE ANNALEN, 2000, 316 (03) :565-576
[57]  
KELLER B, 1987, CR ACAD SCI I-MATH, V305, P225
[58]  
KELLER B, 1994, ANN SCI ECOLE NORM S, V27, P63
[59]  
Keller B., 2006, On differential graded categories, International Congress of Mathematicians, P151
[60]   Cluster-tilted algebras are Gorenstein and stably Calabi-Yau [J].
Keller, Bernhard ;
Reiten, Idun .
ADVANCES IN MATHEMATICS, 2007, 211 (01) :123-151