Phytoremediation prospects of per- and polyfluoroalkyl substances: A review

被引:36
|
作者
Mayakaduwage, Sonia [1 ]
Ekanayake, Anusha [2 ]
Kurwadkar, Sudarshan [3 ]
Rajapaksha, Anushka Upamali [2 ,4 ]
Vithanage, Meththika [2 ]
机构
[1] Univ Adelaide, Sch Biol Sci, Adelaide, SA, Australia
[2] Univ Sri Jayewardenepura, Fac Appl Sci, Ecosphere Resilience Res Ctr, Nugegoda 10250, Sri Lanka
[3] Calif State Univ Fullerton, Dept Civil & Environm Engn, 800 N State Coll Blvd, Fullerton, CA 92831 USA
[4] Univ Sri Jayewardenepura, Fac Appl Sci, Instrument Ctr, Nugegoda 10250, Sri Lanka
关键词
Firefighting foam; PFASs; Phytoremediation; Emerging contaminants; Bioaccumulation; PERFLUOROOCTANE SULFONATE PFOS; PERFLUOROALKYL CARBOXYLIC-ACIDS; PERFLUORINATED ALKYL ACIDS; WATER TREATMENT; SONOCHEMICAL DEGRADATION; BIOLOGICAL-PROPERTIES; REMOVAL EFFICIENCY; FIREFIGHTING FOAM; AQUATIC PLANTS; SOIL;
D O I
10.1016/j.envres.2022.113311
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Extensive use of per- and polyfluoroalkyl substances (PFASs) in various industrial activities and daily-life products has made them ubiquitous contaminants in soil and water. PFAS-contaminated soil acts as a long-term source of pollution to the adjacent surface water bodies, groundwater, soil microorganisms, and soil invertebrates. While several remediation strategies exist to eliminate PFASs from the soil, strong ionic interactions between charged groups on PFAS with soil constituents rendered these PFAS remediation technologies ineffective. Pilot and field-scale data from recent studies have shown a great potential of PFAS to bio-accumulate and distribute within plant compartments suggesting that phytoremediation could be a potential remediation technology to clean up PFAS contaminated soils. Even though several studies have been performed on the uptake and translocation of PFAS by different plant species, most of these studies are limited to agricultural crops and fruit species. In this review, the role of both aquatic and terrestrial plants in the phytoremediation of PFAS was discussed highlighting different mechanisms underlying the uptake of PFASs in the soil-plant and water-plant systems. This review further summarized a wide range of factors that influence the bioaccumulation and translocation of PFASs within plant compartments including both structural properties of PFASs and physiological properties of plant species. Even though phytoremediation appears to be a promising remediation technique, some limitations that reduced the feasibility of phytoremediation in the practical application have been emphasized in previous studies. Additional research directions are suggested, including advanced genetic engineering techniques and endophyte-assisted phytoremediation to upgrade the phytoremediation potential of plants for the successful removal of PFASs.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Occurrence and Risks of Per- and Polyfluoroalkyl Substances in Shellfish
    Nathan G. Giffard
    Saige A. Gitlin
    Marta Rardin
    Jonathan M. Petali
    Celia Y. Chen
    Megan E. Romano
    Current Environmental Health Reports, 2022, 9 : 591 - 603
  • [32] Occurrence and Risks of Per- and Polyfluoroalkyl Substances in Shellfish
    Giffard, Nathan G.
    Gitlin, Saige A.
    Rardin, Marta
    Petali, Jonathan M.
    Chen, Celia Y.
    Romano, Megan E.
    CURRENT ENVIRONMENTAL HEALTH REPORTS, 2022, 9 (04) : 591 - 603
  • [33] Epigenetic changes by per- and polyfluoroalkyl substances (PFAS)
    Kim, Sujin
    Thapar, Isha
    Brooks, Bryan W.
    ENVIRONMENTAL POLLUTION, 2021, 279
  • [34] Toxicity of per- and polyfluoroalkyl substances to aquatic vertebrates
    Ma, Tingting
    Wu, Peng
    Wang, Lisha
    Li, Quanguo
    Li, Xiuhua
    Luo, Yongming
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
  • [35] An overview of the uses of per- and polyfluoroalkyl substances (PFAS)
    Gluege, Juliane
    Scheringer, Martin
    Cousins, Ian T.
    DeWitt, Jamie C.
    Goldenman, Gretta
    Herzke, Dorte
    Lohmann, Rainer
    Ng, Carla A.
    Trier, Xenia
    Wang, Zhanyun
    ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2020, 22 (12) : 2345 - 2373
  • [36] Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS)
    McCarthy, Chris
    Kappleman, William
    DiGuiseppi, William
    CURRENT POLLUTION REPORTS, 2017, 3 (04): : 289 - 301
  • [37] Remediation and mineralization processes for per- and polyfluoroalkyl substances (PFAS) in water: A review
    Verma, Sanny
    Varma, Rajender S.
    Nadagouda, Mallikarjuna N.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 794
  • [38] Treatment of per- and polyfluoroalkyl substances (PFAS): A review of transformation technologies and mechanisms
    Fang, Junhua
    Li, Shaolin
    Gu, Tianhang
    Liu, Airong
    Qiu, Rongliang
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (01):
  • [39] A review of emerging photoinduced degradation methods for per- and polyfluoroalkyl substances in water
    Ali, Zulfikhar A.
    Yamijala, Sharma S. R. K. C.
    Wong, Bryan M.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2023, 41
  • [40] Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review
    Cao, Yuexin
    Ng, Carla
    ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2021, 23 (11) : 1623 - 1640