Substrate-dependent differences in ferroelectric behavior and phase diagram of Si-doped hafnium oxide

被引:12
作者
Lederer, Maximilian [1 ]
Mertens, Konstantin [1 ]
Olivo, Ricardo [1 ]
Kuhnel, Kati [1 ]
Lehninger, David [1 ]
Ali, Tarek [1 ]
Kampfe, Thomas [1 ]
Seidel, Konrad [1 ]
Eng, Lukas M. [2 ,3 ]
机构
[1] Fraunhofer IPMS, Ctr Nanoelect Technol, Bartlake 5, D-01109 Dresden, Germany
[2] Tech Univ Dresden, Inst Angew Phys, Nothnitzer Str 61, D-01187 Dresden, Germany
[3] Tech Univ Dresden, Ctr Excellence Complex & Topol Quantum Matter Ct, D-01062 Dresden, Germany
关键词
Ferroelectric; Antiferroelectric; Hafnium oxide; Interface; MECHANISMS;
D O I
10.1557/s43578-021-00415-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-volatile memories based on ferroelectric hafnium oxide, especially the ferroelectric field-effect transistor (FeFET), have outstanding properties, e.g. for the application in neuromorphic circuits. However, material development has focused so far mainly on metal-ferroelectric-metal (MFM) capacitors, while FeFETs are based on metal-ferroelectric-insulator-semiconductor (MFIS) capacitors. Here, the influence of the interface properties, annealing temperature and Si-doping content are investigated. Antiferroelectric-like behavior is strongly suppressed with a thicker interface layer and high annealing temperature. In addition, high-k interface dielectrics allow for thicker interface layers without retention penalty. Moreover, the process window for ferroelectric behavior is much larger in MFIS capacitors compared to MFM-based films. This does not only highlight the substrate dependence of ferroelectric hafnium oxide films, but also gives evidence that the phase diagram of ferroelectric hafnium oxide is defined by the mechanical stress. Graphic Abstract
引用
收藏
页码:4370 / 4378
页数:9
相关论文
共 44 条
  • [1] High Endurance Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention Penalty
    Ali, T.
    Polakowski, P.
    Riedel, S.
    Buettner, T.
    Kaempfe, T.
    Rudolph, M.
    Paetzold, B.
    Seidel, K.
    Loehr, D.
    Hoffmann, R.
    Czernohorsky, M.
    Kuehnel, K.
    Steinke, P.
    Calvo, J.
    Zimmermann, K.
    Mueller, J.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (09) : 3769 - 3774
  • [2] An unexplored antipolar phase in HfO2 from first principles and implication for wake-up mechanism
    Azevedo Antunes, Luis
    Ganser, Richard
    Alcala, Ruben
    Mikolajick, Thomas
    Schroeder, Uwe
    Kersch, Alfred
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (08)
  • [3] Ferroelectricity in hafnium oxide thin films
    Boescke, T. S.
    Mueller, J.
    Braeuhaus, D.
    Schroeder, U.
    Boettger, U.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [4] Nanoscopic studies of domain structure dynamics in ferroelectric La: HfO2 capacitors
    Buragohain, P.
    Richter, C.
    Schenk, T.
    Lu, H.
    Mikolajick, T.
    Schroeder, U.
    Gruverman, A.
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (22)
  • [5] Dünkel S, 2017, INT EL DEVICES MEET
  • [6] Strain effect on the stability in ferroelectric HfO2 simulated by first-principles calculations
    Fan, Sheng-Ting
    Chen, Yun-Wen
    Liu, C. W.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (23)
  • [7] Pyroelectric Energy Conversion in Doped Hafnium Oxide (HfO2) Thin Films on Area-Enhanced Substrates
    Hanrahan, Brendan
    Mart, Clemens
    Kaempfe, Thomas
    Czernohorsky, Malte
    Weinreich, Wenke
    Smith, Andrew
    [J]. ENERGY TECHNOLOGY, 2019, 7 (10)
  • [8] Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors
    Hoffmann, Michael
    Schroeder, Uwe
    Kuenneth, Christopher
    Kersch, Alfred
    Starschich, Sergej
    Boettger, Ulrich
    Mikolajick, Thomas
    [J]. NANO ENERGY, 2015, 18 : 154 - 164
  • [9] Jerry M, 2017, INT EL DEVICES MEET
  • [10] Doping concentration dependent piezoelectric behavior of Si:HfO2 thin-films
    Kirbach, S.
    Lederer, M.
    Esslinger, S.
    Mart, C.
    Czernohorsky, M.
    Weinreich, W.
    Wallmersperger, T.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (01)