Intelligent Fuzzy Q-Learning control of humanoid robots

被引:0
作者
Er, MJ [1 ]
Zhou, Y [1 ]
机构
[1] Intelligent Syst Ctr, Singapore 637533, Singapore
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS | 2005年 / 3498卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a design methodology for enhancing the stability of humanoid robots is presented. Fuzzy Q-Learning (FQL) is applied to improve the Zero Moment Point (ZMP) performance by intelligent control of the trunk of a humanoid robot. With the fuzzy evaluation signal and the neural networks of FQL, biped robots are dynamically balanced in situations of uneven terrains. At the mean time, expert knowledge can be embedded to reduce the training time. Simulation studies show that the FQL controller is able to improve the stability as the actual ZMP trajectories become close to the ideal case.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 9 条
  • [1] Christopher JohnCornish Hella by Watkins., 1989, Learning from delayed rewards
  • [2] Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning
    Er, MJ
    Deng, C
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (03): : 1478 - 1489
  • [3] Planning walking patterns for a biped robot
    Huang, Q
    Yokoi, K
    Kajita, S
    Kaneko, K
    Arai, H
    Koyachi, N
    Tanie, K
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (03): : 280 - 289
  • [4] ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM
    JANG, JSR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03): : 665 - 685
  • [5] Fuzzy neural network approaches for robotic gait synthesis
    Juang, JG
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2000, 30 (04): : 594 - 601
  • [6] Reinforcement learning of humanoid rhythmic walking parameters based on visual information
    Ogino, M
    Katoh, Y
    Aono, M
    Asada, M
    Hosoda, K
    [J]. ADVANCED ROBOTICS, 2004, 18 (07) : 677 - 697
  • [7] Vukobratovic M., 2001, INT J HUM ROBOT, V1, P157
  • [8] Wang L., 1997, A Course in Fuzzy Systems and Control
  • [9] Robot learning with GA-based fuzzy reinforcement learning agents
    Zhou, CJ
    [J]. INFORMATION SCIENCES, 2002, 145 (1-2) : 45 - 68