DECOMPOSITION METHODS FOR THE ESTIMATION OF BARE SOIL SURFACE PARAMETERS USING FULLY POLARIMETRIC SAR DATA

被引:1
|
作者
Yuan, Weilin [1 ]
Qin, Qiming [1 ]
Du, Shihong [1 ]
Shen, Xinyi [1 ]
Jiang, Hongbo [1 ]
Ma, Yan [1 ]
Liu, Shixiong [1 ]
机构
[1] Peking Univ, Inst Remote Sensing & GIS, Beijing 100871, Peoples R China
来源
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2010年
关键词
Bare soil surface parameters; Polarimetric target decomposition; Synthetic Aperture Radar (SAR); Advanced Integral Equation Model (AIEM); CLASSIFICATION; THEOREMS; MODEL;
D O I
10.1109/IGARSS.2010.5653057
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study wants to demonstrate that two different polarimetric target decomposition methods can improve SAR data accuracy for estimating the parameters of bare soil surface. To achieve this goal, two experiments are conducted: (1) both Freeman and Cloude decomposition methods are performed on JPL/AIRSAR L-band fully polarimetric data; and (2) Advanced Integral Equation Model (AIEM) is used to simulate backscatting coefficients. The root mean square errors (RMSEs) of sigma(0)(hh), sigma(0)(vv) between original data and AIEM simulated data are 1.96 and 1.25 dB. However, if Cloude method is used to decompose original data, the RMSEs will be reduced to 1.45 and 1.14dB, respectively; for Freeman method, the RMSEs are 1.64 and 1.35 dB. Therefore, polarimetric target decomposition compensation, especially Cloude method, can help to improve the accuracy of SAR data for estimating the parameters of bare soil surface.
引用
收藏
页码:1273 / 1276
页数:4
相关论文
共 50 条
  • [21] The Effect of Topography on Target Decomposition of Polarimetric SAR Data
    Park, Sang-Eun
    REMOTE SENSING, 2015, 7 (05): : 4997 - 5011
  • [22] SUPERVISED CLASSIFICATION USING POLARIMETRIC SAR DECOMPOSITION PARAMETERS TO DETECT ANOMALIES ON EARTHEN LEVEES
    Marapareddy, Ramakalavathi
    Aanstoos, James V.
    Younan, Nicolas H.
    Bruce, Lori M.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 983 - 986
  • [23] ESTIMATION AND ANALYSIS SOIL MOISTURE OF HUNSHANDAKE SANDY LAND FROM POLARIMETRIC SAR DATA
    Wang, Chi
    Huang, Pingping
    Su, Ritu
    Tan, Weixian
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2035 - 2038
  • [24] Identification of changes in urban land cover type using fully polarimetric SAR data
    Xie, Lei
    Zhang, Hong
    Liu, Meng
    Wang, Chao
    REMOTE SENSING LETTERS, 2016, 7 (07) : 691 - 700
  • [25] Three-Component Model-Based Decomposition for Polarimetric SAR Data
    An, Wentao
    Cui, Yi
    Yang, Jian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (06): : 2732 - 2739
  • [26] A classification algorithm based on Cloude decomposition model for fully polarimetric SAR image
    Xiang, Hongmao
    Liu, Shanwei
    Zhuang, Ziqi
    Zhang, Naixin
    6TH DIGITAL EARTH SUMMIT, 2016, 46
  • [27] IMPERVIOUS SURFACES ESTIMATION USING DUAL-POLARIMETRIC SAR AND OPTICAL DATA
    Zhang, Hongsheng
    Lin, Hui
    Li, Yu
    Zhang, Yuanzhi
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [28] An Extension of the Alpha Approximation Method for Soil Moisture Estimation Using Time-Series SAR Data Over Bare Soil Surfaces
    He, Lian
    Qin, Qiming
    Panciera, Rocco
    Tanase, Mihai
    Walker, Jeffrey P.
    Hong, Yang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1328 - 1332
  • [29] Disaster debris estimation using high-resolution polarimetric stereo-SAR
    Koyama, Christian N.
    Gokon, Hideomi
    Jimbo, Masaru
    Koshimura, Shunichi
    Sato, Motoyuki
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 120 : 84 - 98
  • [30] Polarimetric SAR Signature Detection Using the Cameron Decomposition
    Rogers, George W.
    Rais, Houra
    Cameron, William L.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 690 - 700