共 50 条
Quantitative description of radiofrequency (RF) power-based ratiometric chemical exchange saturation transfer (CEST) pH imaging
被引:48
|作者:
Wu, Renhua
[1
]
Longo, Dario Livio
[2
]
Aime, Silvio
[3
]
Sun, Phillip Zhe
[4
,5
]
机构:
[1] Shantou Univ, Coll Med, Affiliated Hosp 2, Dept Radiol, Shantou, Peoples R China
[2] Univ Turin, Ctr Mol Biotechnol, Inst Biostruct & Bioimaging, CNR, Turin, Italy
[3] Univ Turin, Mol Imaging Ctr, Dept Mol Biotechnol & Hlth Sci, Turin, Italy
[4] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[5] Harvard Univ, Sch Med, Boston, MA USA
基金:
美国国家科学基金会;
关键词:
chemical exchange saturation transfer (CEST);
MRI;
pH;
quantitative CEST (qCEST) analysis;
ratiometric CEST analysis;
IN-VIVO;
CONTRAST AGENT;
MRI;
TIME;
IOPAMIDOL;
QUESP;
RATES;
WATER;
D O I:
10.1002/nbm.3284
中图分类号:
Q6 [生物物理学];
学科分类号:
071011 ;
摘要:
Chemical exchange saturation transfer (CEST) MRI holds great promise for the imaging of pH. However, routine CEST measurement varies not only with the pH-dependent chemical exchange rate, but also with CEST agent concentration, providing pH-weighted information. Conventional ratiometric CEST imaging normalizes the confounding concentration factor by analyzing the relative CEST effect from different exchangeable groups, requiring CEST agents with multiple chemically distinguishable labile proton sites. Recently, a radiofrequency (RF) power-based ratiometric CEST MRI approach has been developed for concentration-independent pH MRI using CEST agents with a single exchangeable group. To facilitate quantification and optimization of the new ratiometric analysis, we quantified the RF power-based ratiometric CEST ratio (rCESTR) and derived its signal-to-noise and contrast-to-noise ratios. Using creatine as a representative CEST agent containing a single exchangeable site, our study demonstrated that optimized RF power-based ratiometric analysis provides good pH sensitivity. We showed that rCESTR follows a base-catalyzed exchange relationship with pH independent of creatine concentration. The pH accuracy of RF power-based ratiometric MRI was within 0.15-0.20 pH units. Furthermore, the absolute exchange rate can be obtained from the proposed ratiometric analysis. To summarize, RF power-based ratiometric CEST analysis provides concentration-independent pH-sensitive imaging and complements conventional multiple labile proton group-based ratiometric CEST analysis. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:555 / 565
页数:11
相关论文