Dual-Stream Convolutional Neural Network With Residual Information Enhancement for Pansharpening

被引:33
作者
Yang, Yong [1 ]
Tu, Wei [1 ]
Huang, Shuying [2 ]
Lu, Hangyuan [3 ]
Wan, Weiguo [4 ]
Gan, Lixin [5 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China
[2] Tiangong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[3] Jinhua Polytech, Coll Informat Engn, Jinhua 321007, Zhejiang, Peoples R China
[4] Jiangxi Univ Finance & Econ, Sch Software & Internet Things Engn, Nanchang 330032, Jiangxi, Peoples R China
[5] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Pansharpening; Spatial resolution; Image resolution; Remote sensing; Data mining; Convolution; Dual-stream convolutional neural network (DSCNN); information complementation block; pansharpening; residual information enhancement (RIE); PAN-SHARPENING METHOD; IMAGE FUSION; WAVELET TRANSFORM; DECOMPOSITION; REGRESSION; QUALITY;
D O I
10.1109/TGRS.2021.3098752
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep-learning-based pansharpening methods have achieved remarkable results due to their powerful feature representation ability. However, the existing deep-learning-based pansharpening methods not only lack information exchange and sharing between features of different resolutions but also cannot effectively use the residual information at different levels. These disadvantages may lead to the loss of spatial information and spectral information in the pansharpened image. To address the above problems, we propose a novel dual-stream convolutional neural network with residual information enhancement (DSCNN-RIE) for pansharpening. The proposed network is mainly composed of a set of dual-stream information complementation blocks (DSICBs), which can extract various spatial details at two different resolutions using convolutional filters of various sizes simultaneously, and can transfer complementary information effectively between two different resolutions. Furthermore, to improve the learning ability of the network and enhance the feature extraction, an RIE strategy is presented to stack different levels of residuals into the outputs of cascaded DSICBs. The final pansharpened image is obtained by integrating the extracted features using the shallow feature information of the source images. Experimental results on three datasets demonstrate that DSCNN-RIE outperforms ten other state-of-the-art pansharpening methods in both subjective and objective image-quality evaluations.
引用
收藏
页数:16
相关论文
共 45 条
[1]   Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis [J].
Aiazzi, B ;
Alparone, L ;
Baronti, S ;
Garzelli, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2300-2312
[2]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[3]   Multispectral and panchromatic data fusion assessment without reference [J].
Alparone, Luciano ;
Alazzi, Bruno ;
Baronti, Stefano ;
Garzelli, Andrea ;
Nencini, Filippo ;
Selva, Massimo .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (02) :193-200
[4]   Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest [J].
Alparone, Luciano ;
Wald, Lucien ;
Chanussot, Jocelyn ;
Thomas, Claire ;
Gamba, Paolo ;
Bruce, Lori Mann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3012-3021
[5]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[6]   Remote sensing image fusion via wavelet transform and sparse representation [J].
Cheng, Jian ;
Liu, Haijun ;
Liu, Ting ;
Wang, Feng ;
Li, Hongsheng .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 104 :158-173
[7]   A New Adaptive Component-Substitution-Based Satellite Image Fusion by Using Partial Replacement [J].
Choi, Jaewan ;
Yu, Kiyun ;
Kim, Yongil .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (01) :295-309
[8]   Detail Injection-Based Deep Convolutional Neural Networks for Pansharpening [J].
Deng, Liang-Jian ;
Vivone, Gemine ;
Jin, Cheng ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (08) :6995-7010
[9]   RRSGAN: Reference-Based Super-Resolution for Remote Sensing Image [J].
Dong, Runmin ;
Zhang, Lixian ;
Fu, Haohuan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   A Variational Approach for Pan-Sharpening [J].
Fang, Faming ;
Li, Fang ;
Shen, Chaomin ;
Zhang, Guixu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (07) :2822-2834