Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to Abiotic stress

被引:31
|
作者
Gupta, Saurabh [1 ,4 ]
Mishra, Vinod Kumar [2 ]
Kumari, Sunita [2 ]
Raavi [3 ]
Chand, Ramesh [2 ]
Varadwaj, Pritish Kumar [1 ]
机构
[1] Indian Inst Informat Technol, Dept Appl Sci, Allahabad 211015, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Agr Sci, Varanasi 221005, Uttar Pradesh, India
[3] Boston Univ, Mol Biol Cell Biol & Biochem Program, Boston, MA 02215 USA
[4] AgriGenome Labs Pvt Ltd, Hyderabad 500078, India
关键词
Wheat; WRKY TFs; Gene amplification; Heat stress; Drought stress; TRANSCRIPTION FACTORS; ARABIDOPSIS-THALIANA; DROUGHT TOLERANCE; SERINE PROTEINASE; EXPRESSION; WHEAT; IDENTIFICATION; VISUALIZATION; RESISTANCE; CYTOSCAPE;
D O I
10.1007/s13258-018-0742-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
WRKY transcription factors (TFs) act in regulating plant growth and development as well as in response to different stress. Some earlier studies done by individual researchers reported different wheat WRKY TFs. Although, the recently released wheat genome has opened an avenue to investigate wheat WRKYs (TaWRKY) TFs. Prime objective of this study to performed genome-wide classifications of TaWRKYs and their functional annotation. The classification of 107 individual identified characterized sequences of TaWRKY (IICS-TaWRKY) and 160 uncharacterized draft sequences of TaWRKY (UDS-TaWRKY), along with their gene structures and motifs analysis was performed. Along with comparative sequence analysis and microarray analysis was performed to mimic out TaWRKYs functions in response to different abiotic stresses, accompanied by in-vitro validation. The comparative phylogenetic analysis and estimation of Ka/Ks ratio with Triticum urartu, illustrate group based clasifications of TaWRKYs and evolutionary divergences. Furthermore, motif-based and protein-DNA interaction analysis of TaWRKYs helps to identify, their putative function in target DNA recognition sites. Subsequently, results of microarray and comparative sequence analysis provides the evidence of TaWRKYs involved in heat and/or drought stress. Further, in-vitro results validates that TaWRKY014, TaWRKY090 are found to participate in response of drought stress, whereas TaWRKY008, TaWRKY122, and WRKY45 are involved in response of heat and drought stress. These findings can be utilized in developing novel heat and drought-tolerant wheat cultivars using marker-assisted breeding and transgenic development.
引用
收藏
页码:79 / 94
页数:16
相关论文
共 50 条
  • [1] Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to Abiotic stress
    Saurabh Gupta
    Vinod Kumar Mishra
    Sunita Kumari
    Ramesh Raavi
    Pritish Kumar Chand
    Genes & Genomics, 2019, 41 : 79 - 94
  • [2] Genome-wide analysis of the WRKY gene family and its response to abiotic stress in buckwheat (Fagopyrum tataricum)
    He, Xia
    Li, Jing-jian
    Chen, Yuan
    Yang, Jia-qi
    Chen, Xiao-yang
    OPEN LIFE SCIENCES, 2019, 14 (01): : 80 - 96
  • [3] Genome-wide analysis and functional characterization of CHYR gene family associated with abiotic stress tolerance in bread wheat (Triticum aestivum L.)
    Hao Liu
    Wenbo Yang
    Xingli Zhao
    Guozhang Kang
    Na Li
    Huawei Xu
    BMC Plant Biology, 22
  • [4] Genome-wide analysis and functional characterization of CHYR gene family associated with abiotic stress tolerance in bread wheat (Triticum aestivum L.)
    Liu, Hao
    Yang, Wenbo
    Zhao, Xingli
    Kang, Guozhang
    Li, Na
    Xu, Huawei
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [5] Genome-Wide Identification and Characterization of the Cystatin Gene Family in Bread Wheat (Triticum aestivum L.)
    He, Long
    Chen, Xuan
    Xu, Miaoze
    Liu, Tingting
    Zhang, Tianye
    Li, Juan
    Yang, Jian
    Chen, Jianping
    Zhong, Kaili
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [6] Genome-wide identification and characterization of UBP gene family in wheat (Triticum aestivum L. )
    Xu, Miaoze
    Jin, Peng
    Liu, Tingting
    Gao, Shiqi
    Zhang, Tianye
    Zhang, Fan
    Han, Xiaolei
    He, Long
    Chen, Jianping
    Yang, Jian
    PEERJ, 2021, 9
  • [7] Genome-Wide Analysis and Evolutionary Perspective of the Cytokinin Dehydrogenase Gene Family in Wheat (Triticum aestivum L.)
    Jain, Priyanka
    Singh, Ankita
    Iquebal, Mir Asif
    Jaiswal, Sarika
    Kumar, Sundeep
    Kumar, Dinesh
    Rai, Anil
    FRONTIERS IN GENETICS, 2022, 13
  • [8] Genome-wide identification and expression analysis of the kinesin gene superfamily suggests roles in response to abiotic stress and fertility of wheat (Triticum aestivum L.)
    Chen, Qinge
    Ren, Yang
    Yan, Qin
    Zheng, Zhiyuan
    Zhang, Gaisheng
    Ma, Lingjian
    Song, Qilu
    Niu, Na
    BMC GENOMICS, 2024, 25 (01):
  • [9] Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.
    Duan, Shuonan
    Liu, Binhui
    Zhang, Yuanyuan
    Li, Guoliang
    Guo, Xiulin
    BMC GENOMICS, 2019, 20 (1)
  • [10] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Zhang, Peipei
    Zhang, Linghui
    Chen, Tao
    Jing, Fanli
    Liu, Yuan
    Ma, Jingfu
    Tian, Tian
    Yang, Delong
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (04) : 2899 - 2913