Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries

被引:125
作者
Zhang, Zhi-Jia [1 ]
Wang, Yun-Xiao [1 ]
Chou, Shu-Lei [1 ]
Li, Hui-Jun [2 ]
Liu, Hua-Kun [1 ]
Wang, Jia-Zhao [1 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[2] Univ Wollongong, Fac Engn, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
alpha-Fe2O3; Reduced graphene oxide; Microwave autoclave; Sodium-ion battery; REDUCED GRAPHENE OXIDE; NEGATIVE ELECTRODES; HIGH-CAPACITY; METAL-OXIDE; LOW-COST; ELECTROCHEMICAL PROPERTIES; STORAGE MECHANISM; RATE CAPABILITY; LONG-LIFE; COMPOSITE;
D O I
10.1016/j.jpowsour.2015.01.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
alpha-Fe2O3/reduced graphene oxide (rGO) nanocomposites were successfully synthesized within 15 min through a facile, environmentally friendly microwave hydrothermal method. From field emission scanning electron microscopy and transmission electron microscopy, it can be determined that the alpha-Fe2O3 nanoparticles, around 50 nm in diameter, are uniformly anchored on the graphene nanosheets. The as-obtained alpha-Fe2O3/rGO nanocomposites were applied as anode materials in sodium-ion batteries, which could deliver capacity of similar to 310 mAh g(-1) after 150 cycles at 100 mA g(-1). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 56 条
[1]  
Bersani D, 1999, J RAMAN SPECTROSC, V30, P355, DOI 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO
[2]  
2-C
[3]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[4]   High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V2O5 Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Sun, Jia-Zeng ;
Wexler, David ;
Forsyth, Maria ;
Liu, Hua-Kun ;
MacFarlane, Douglas R. ;
Dou, Shi-Xue .
CHEMISTRY OF MATERIALS, 2008, 20 (22) :7044-7051
[5]   Negative electrodes for Na-ion batteries [J].
Dahbi, Mouad ;
Yabuuchi, Naoaki ;
Kubota, Kei ;
Tokiwa, Kazuyasu ;
Komaba, Shinichi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) :15007-15028
[6]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[7]   Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries [J].
Gocheva, Irina D. ;
Nishijima, Manabu ;
Doi, Takayuki ;
Okada, Shigeto ;
Yamaki, Jun-ichi ;
Nishida, Tetsuaki .
JOURNAL OF POWER SOURCES, 2009, 187 (01) :247-252
[8]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[9]   Synergistic effect of CdSe quantum dots on photoelectrochemical response of electrodeposited α-Fe2O3 films [J].
Ikram, Ashi ;
Sahai, Sonal ;
Rai, Snigdha ;
Dass, Sahab ;
Shrivastav, Rohit ;
Satsangi, Vibha R. .
JOURNAL OF POWER SOURCES, 2014, 267 :664-672
[10]   Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries [J].
Jian, Zelang ;
Zhao, Bin ;
Liu, Pan ;
Li, Fujun ;
Zheng, Mingbo ;
Chen, Mingwei ;
Shi, Yi ;
Zhou, Haoshen .
CHEMICAL COMMUNICATIONS, 2014, 50 (10) :1215-1217