On the solvability of graded Novikov algebras

被引:9
作者
Umirbaev, Ualbai [1 ,2 ,3 ,4 ]
Zhelyabin, Viktor [3 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Al Farabi Kazakh Natl Univ, Dept Math, Alma Ata 050040, Kazakhstan
[3] Inst Math SB RAS, Novosibirsk 630090, Russia
[4] Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
基金
俄罗斯科学基金会;
关键词
Novikov algebra; graded algebra; solvability; nilpotency; automorphism; the ring of invariants; AUTOMORPHISMS; RINGS;
D O I
10.1142/S0218196721500491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the right ideal of a Novikov algebra generated by the square of a right nilpotent subalgebra is nilpotent. We also prove that a G-graded Novikov algebra N over a field K with solvable 0-component N0 is solvable, where G is a finite additive abelean group and the characteristic of K does not divide the order of the group G. We also show that any Novikov algebra N with a finite solvable group of automorphisms G is solvable if the algebra of invariants NG is solvable.
引用
收藏
页码:1405 / 1418
页数:14
相关论文
共 30 条
[1]  
BALINSKII AA, 1985, DOKL AKAD NAUK SSSR+, V283, P1036
[2]  
BERGMAN GM, 1973, P LOND MATH SOC, V27, P69
[3]   On free Gelfand-Dorfman-Novikov-Poisson algebras and a PBW theorem [J].
Bokut, L. A. ;
Chen, Yuqun ;
Zhang, Zerui .
JOURNAL OF ALGEBRA, 2018, 500 :153-170
[4]  
Dorofeev G. V., 1960, USP MAT NAUK, V15, P147, DOI DOI 10.1090/TRANS2/037/08
[5]   Engel theorem for Novikov algebras [J].
Dzhumadil'daev, AS ;
Tulenbaev, KM .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) :883-888
[6]   On right symmetric and Novikov nil-algebras of bounded index [J].
Filippov, VT .
MATHEMATICAL NOTES, 2001, 70 (1-2) :258-263
[7]  
Filippov VT., 1989, Mat. Zametki, V45, P101
[8]  
GELFAND IM, 1979, FUNCT ANAL APPL, V13, P248
[9]  
Goncharov M, 2015, ALGEBRA DISCRET MATH, V20, P203
[10]  
Higman G., 1957, J LOND MATH SOC, V32, P321, DOI DOI 10.1112/JLMS/S1-32.3.321