Inferring the microscopic surface energy of protein-protein interfaces from mutation data

被引:8
作者
Moal, Iain H. [1 ]
Dapkunas, Justas [2 ]
Fernandez-Recio, Juan [1 ]
机构
[1] BSC, Dept Life Sci, Joint BSC IRB Res Program Computat Biol, Barcelona 08034, Spain
[2] Vilnius Univ, Inst Biotechnol, LT-02241 Vilnius, Lithuania
关键词
protein-protein interactions; binding affinity; interaction energy; mutation; docking; hydrophobic effect; empirical modeling; CHAIN CONFORMATIONAL ENTROPY; COMPUTATIONAL DESIGN; BINDING-AFFINITY; HYDROPHOBIC PATCHES; DRIVING-FORCE; DOCKING; PREDICTION; SPECIFICITY; COMPLEX; PRINCIPLES;
D O I
10.1002/prot.24761
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations at protein-protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical G values, yielding mean energies of -48 calmol(-1)angstrom(-2) for interactions between hydrophobic surfaces, -51 to -80 calmol(-1)angstrom(-2) for surfaces of complementary charge, and 66-83 calmol(-1)angstrom(-2) for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at -24 calmol(-1)angstrom(-2). Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid-body interactions (r=0.66). When used to rerank docking poses, it can place near-native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50-95% of the cohesive energy. The model is available open-source from and via the CCharpPPI web server . Proteins 2015; 83:640-650. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:640 / 650
页数:11
相关论文
共 50 条
[21]   A two-step framework for inferring direct protein-protein interaction network from AP-MS data [J].
Tian, Bo ;
Zhao, Can ;
Gu, Feiyang ;
He, Zengyou .
BMC SYSTEMS BIOLOGY, 2017, 11
[22]   ProInterVal: Validation of Protein-Protein Interfaces through Learned Interface Representations [J].
Ovek, Damla ;
Keskin, Ozlem ;
Gursoy, Attila .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (08) :2979-2987
[23]   Characterizing Changes in the Rate of Protein-Protein Dissociation upon Interface Mutation Using Hotspot Energy and Organization [J].
Agius, Rudi ;
Torchala, Mieczyslaw ;
Moal, Iain H. ;
Fernandez-Recio, Juan ;
Bates, Paul A. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[24]   Efficient Relaxation of Protein-Protein Interfaces by Discrete Molecular Dynamics Simulations [J].
Emperador, Agusti ;
Solernou, Albert ;
Sfriso, Pedro ;
Pons, Carles ;
Lluis Gelpi, Josep ;
Fernandez-Recio, Juan ;
Orozco, Modesto .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (02) :1222-1229
[25]   Emerging themes in the computational design of novel enzymes and protein-protein interfaces [J].
Khare, Sagar D. ;
Fleishman, Sarel J. .
FEBS LETTERS, 2013, 587 (08) :1147-1154
[26]   Protein-Protein Interfaces in Viral Capsids Are Structurally Unique [J].
Cheng, Shanshan ;
Brooks, Charles L., III .
JOURNAL OF MOLECULAR BIOLOGY, 2015, 427 (22) :3613-3624
[27]   Modeling the Dynamics of Protein-Protein Interfaces, How and Why? [J].
Karaca, Ezgi ;
Prevost, Chantal ;
Sacquin-Mora, Sophie .
MOLECULES, 2022, 27 (06)
[28]   On the role of electrostatic interactions in the design of protein-protein interfaces [J].
Sheinerman, FB ;
Honig, B .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 318 (01) :161-177
[29]   Optimizing Energy Functions for Protein-Protein Interface Design [J].
Sharabi, Oz ;
Yanover, Chen ;
Dekel, Ayelet ;
Shifman, Julia M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :23-32
[30]   Druggability assessment of protein-protein interfaces [J].
Wanner, Jutta ;
Fry, David C. ;
Peng, Zhengwei ;
Roberts, John .
FUTURE MEDICINAL CHEMISTRY, 2011, 3 (16) :2021-2038