The bifurcation measure has maximal entropy

被引:1
|
作者
De Thelin, Henry [1 ]
Gauthier, Thomas [2 ]
Vigny, Gabriel [3 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, Inst Galilee,Lab Anal Geometrie & Applicat, 99 Ave JB Clement, F-93430 Villetaneuse, France
[2] Univ Paris Saclay, Ecole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
[3] Univ Picardie Jules Verne, CNRS, UMR 7352, Lab Amienois Math Fondamentale & Appl, 33 Rue St Leu, F-80039 Amiens 1, France
关键词
POLYNOMIAL DIFFEOMORPHISMS; RATIONAL MAPS; QUANTITATIVE EQUIDISTRIBUTION; EQUILIBRIUM MEASURE; PERIODIC POINTS; DYNAMICS; ENDOMORPHISMS; EXPONENTS; CURRENTS;
D O I
10.1007/s11856-019-1955-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a complex manifold and let (f lambda)lambda is an element of?\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${({f_\lambda})_{\lambda \in {\rm{\Lambda}}}}$$\end{document} be a holomorphic family of rational maps of degree d >= 2of DOUBLE-STRUCK CAPITAL P-1. We define a natural notion of entropy of bifurcation, mimicking the classical definition of entropy, by the parametric growth rate of critical orbits. We also define a notion of a measure-theoretic bifurcation entropy for which we prove a variational principle: the measure of bifurcation is a measure of maximal entropy. We rely crucially on a generalization of Yomdin's bound of the volume of the image of a dynamical ball. Applying our results to complex dynamics in several variables, we notably define and compute the entropy of the trace measure of the Green currents of a holomorphic endomorphism of DOUBLE-STRUCK CAPITAL P-k.
引用
收藏
页码:213 / 243
页数:31
相关论文
共 50 条