BIFURCATIONS IN KURAMOTO-SIVASHINSKY EQUATIONS

被引:6
|
作者
Kashchenko, S. A. [1 ,2 ]
机构
[1] Demidov Yaroslavl State Univ, Yaroslavl, Russia
[2] Natl Res Nucl Univ MIFI, Moscow, Russia
关键词
bifurcation; stability; normal form; singular perturbation; dynamics; NONLINEAR STABILITY; DYNAMICAL PROPERTIES; WAVES; SYSTEMS; FILM;
D O I
10.1134/S0040577917070029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the local dynamics of the classical Kuramoto-Sivashinsky equation and its generalizations and study the problem of the existence and asymptotic behavior of periodic solutions and tori. The most interesting results are obtained in the so-called infinite-dimensional critical cases. Considering these cases, we construct special nonlinear partial differential equations that play the role of normal forms and whose nonlocal dynamics thus determine the behavior of solutions of the original boundary value problem.
引用
收藏
页码:958 / 973
页数:16
相关论文
共 50 条
  • [31] ON THE CONTROL OF THE LINEAR KURAMOTO-SIVASHINSKY EQUATION
    Cerpa, Eduardo
    Guzman, Patricio
    Mercado, Alberto
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 165 - 194
  • [32] On the Global Existence for the Kuramoto-Sivashinsky Equation
    Kukavica, Igor
    Massatt, David
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (01) : 69 - 85
  • [33] LIAPOUNOV EXPONENTS FOR THE KURAMOTO-SIVASHINSKY MODEL
    MANNEVILLE, P
    LECTURE NOTES IN PHYSICS, 1985, 230 : 319 - 326
  • [34] Feedback control of the Kuramoto-Sivashinsky equation
    Christofides, PD
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 4646 - 4651
  • [35] OSCILLATIONS OF SOLUTIONS OF THE KURAMOTO-SIVASHINSKY EQUATION
    KUKAVICA, I
    PHYSICA D, 1994, 76 (04): : 369 - 374
  • [36] Bifurcations of Spatially Inhomogeneous Solutions of a Boundary Value Problem for the Generalized Kuramoto-Sivashinsky Equation
    Sekatskaya, A., V
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2018, 21 (01): : 69 - 78
  • [37] Dynamical correlations for the kuramoto-sivashinsky equation
    Kobayashi, Miki U.
    Fujisaka, Hirokazu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (06): : 1043 - 1052
  • [38] Kuramoto-Sivashinsky model for a dusty medium
    Doronin, GG
    Larkin, NA
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (03) : 179 - 192
  • [39] LYAPUNOV EXPONENTS OF THE KURAMOTO-SIVASHINSKY PDE
    Edson, Russell A.
    Bunder, J. E.
    Mattner, Trent W.
    Roberts, A. J.
    ANZIAM JOURNAL, 2019, 61 (03): : 270 - 285
  • [40] THE LARGE TIME CONVERGENCE OF SPECTRAL METHOD FOR GENERALIZED KURAMOTO-SIVASHINSKY EQUATIONS
    B. Guo(Institute of Applied Physics and Computational Mathematics
    JournalofComputationalMathematics, 1997, (01) : 1 - 13