Inverse source problem related to one-dimensional Saint-Venant equation

被引:1
作者
Takase, Hiroshi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
关键词
Carleman estimate; inverse source problem; global Lipschitz stability;
D O I
10.1080/00036811.2020.1727893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The one-dimensional Saint-Venant equation describes unsteady water flow in channels and is derived from the one-dimensional Euler equation by imposing several physical assumptions. In this paper, we consider the linearized and simplified equation in the one-dimensional case featuring a mixed derivative term and prove the global Lipschitz stability of the inverse source problem via the global Carleman estimate.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 7 条
  • [1] [Anonymous], 1939, Ark. Mat. Astron. Fys.
  • [2] Global Carleman Estimates for Waves and Applications
    Baudouin, Lucie
    de Buhan, Maya
    Ervedoza, Sylvain
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (05) : 823 - 859
  • [3] Bellassoued M., 2017, CARLEMAN ESTIMATES A
  • [4] Bukhgeim A I., 1981, SOV MATH DOKL, V17, P244
  • [5] Cunge J.A., 1980, PRACTICAL ASPECTS CO
  • [6] Global Lipschitz stability in an inverse hyperbolic problem by interior observations
    Imanuvilov, OY
    Yamamoto, M
    [J]. INVERSE PROBLEMS, 2001, 17 (04) : 717 - 728
  • [7] Saint-Venant A.B., 1871, C. R. Acad. Sci, V73, P147