Capacity of spatio-temporally structured MIMO channels with estimation errors

被引:0
|
作者
Svantesson, T [1 ]
Rao, BD [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Practical MIMO channels often exhibit structure in both space and time, i.e. a spatio-temporal structure. The potential of exploiting this structure in training based schemes is studied using a common ray-based channel model that captures parts of the structure observed in measurements. A lower bound, the Cramer-Rao lower bound (CRB), on the channel estimation error and a lower bound on the capacity are used to study the potential gain in exploiting channel structure. It is found that the training based capacity may be substantially increased since a more parsimonious channel model with less parameters to estimate can be used. Numerical evaluations indicate that the capacity grows with the number of antennas similar to the case of a known channel if the structure is exploited. If it is not exploited, the training-based capacity reaches a maximum after which it decreases with the number of antennas. Furthermore, the temporal structure can be used to interpolate or predict the channel between training instants and it is found that prediction can improve performance for training based schemes.
引用
收藏
页码:401 / 404
页数:4
相关论文
共 50 条
  • [31] Capacity Estimation in MIMO Synaptic Channels
    Veletic, Mladen
    Balasingham, Ilangko
    ACM NANOCOM 2018: 5TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION, 2018,
  • [32] An Efficient and Robust Estimation of Spatio-Temporally Distributed Parameters in Dynamic Models by an Ensemble Kalman Filter
    Sawada, Yohei
    Duc, Le
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (02)
  • [33] Video completion via spatio-temporally consistent motion inpainting
    1600, Information Processing Society of Japan (06):
  • [34] ESTIMATES FOR SPATIO-TEMPORALLY DEPENDENT REACTION DIFFUSION-SYSTEMS
    FITZGIBBON, WE
    MORGAN, JJ
    SANDERS, RS
    WAGGONER, SJ
    LECTURE NOTES IN MATHEMATICS, 1991, 1475 : 130 - 146
  • [35] Platelet glycoprotein V spatio-temporally controls fibrin formation
    Sarah Beck
    Patricia Öftering
    Renhao Li
    Katherina Hemmen
    Magdolna Nagy
    Yingchun Wang
    Alessandro Zarpellon
    Michael K. Schuhmann
    Guido Stoll
    Zaverio M. Ruggeri
    Katrin G. Heinze
    Johan W. M. Heemskerk
    Wolfram Ruf
    David Stegner
    Bernhard Nieswandt
    Nature Cardiovascular Research, 2023, 2 : 368 - 382
  • [36] Spatio-temporally Statistical Modeling of Precipitation Data for Flood Forecast
    Su Ying
    Jin Zhanming
    Peng Gongqian
    Li Xia
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 1701 - 1707
  • [37] Spatio-Temporally Constrained Planning for Cooperative Vehicles in a Harvesting Scenario
    Scheuren, Stephan
    Stiene, Stefan
    Hartanto, Ronny
    Hertzberg, Joachim
    Reinecke, Max
    KUNSTLICHE INTELLIGENZ, 2013, 27 (04): : 341 - 346
  • [38] Platelet glycoprotein V spatio-temporally controls fibrin formation
    Beck, Sarah
    Oeftering, Patricia
    Li, Renhao
    Hemmen, Katherina
    Nagy, Magdolna
    Wang, Yingchun
    Zarpellon, Alessandro
    Schuhmann, Michael K.
    Stoll, Guido
    Ruggeri, Zaverio M.
    Heinze, Katrin G.
    Heemskerk, Johan W. M.
    Ruf, Wolfram
    Stegner, David
    Nieswandt, Bernhard
    NATURE CARDIOVASCULAR RESEARCH, 2023, 2 (04): : 368 - +
  • [39] A Spatio-Temporally Adaptive Clustering Protocol for Wireless Microsensor Networks
    Kota, Nagarjun Rao
    Grover, Piyush
    Mitra, Pabitra
    2009 INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2009, : 178 - 183
  • [40] Detecting Spatio-Temporally Interest Points Using the Shearlet Transform
    Malafronte, Damiano
    Odone, Francesca
    De Vito, Ernesto
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 501 - 510