Activity-Dependent Synaptic Plasticity in Drosophila melanogaster

被引:23
|
作者
Bai, Yiming [1 ]
Suzuki, Takashi [1 ]
机构
[1] Tokyo Inst Technol, Sch Life Sci & Technol, Yokohama, Kanagawa, Japan
来源
FRONTIERS IN PHYSIOLOGY | 2020年 / 11卷
关键词
synaptic plasticity; activity-dependent neuroplasticity; Drosophila melanogaster; neuroplasticity; nervous system; FASCICLIN-II; FUNCTIONAL COMPONENTS; GENETIC DISSECTION; PROTEIN; SYNAPSES; WINGLESS; CALCIUM; EXPRESSION; MEMORY; LARVAL;
D O I
10.3389/fphys.2020.00161
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The Drosophila nervous system is a valuable model to examine the mechanisms of activity-dependent synaptic modification (plasticity) owing to its relatively simple organization and the availability of powerful genetic tools. The larval neuromuscular junction (NMJ) in particular is an accessible model for the study of synaptic development and plasticity. In addition to the NMJ, huge strides have also been made on understanding activity-dependent synaptic plasticity in the Drosophila olfactory and visual systems. In this review, we focus mainly on the underlying processes of activity-dependent synaptic plasticity at both pre-synaptic and post-synaptic terminals, and summarize current knowledge on activity-dependent synaptic plasticity in different parts of the Drosophila melanogaster nervous system (larval NMJ, olfactory system, larval visual system, and adult visual system). We also examine links between synaptic development and activity-dependent synaptic plasticity, and the relationships between morphological and physiological plasticity. We provide a point of view from which we discern that the underlying mechanism of activity-dependent plasticity may be common throughout the nervous systems in Drosophila melanogaster.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems
    Yi Li
    Yingpeng Zhong
    Jinjian Zhang
    Lei Xu
    Qing Wang
    Huajun Sun
    Hao Tong
    Xiaoming Cheng
    Xiangshui Miao
    Scientific Reports, 4
  • [32] Neural cell adhesion molecules in activity-dependent development and synaptic plasticity
    Fields, RD
    Itoh, K
    TRENDS IN NEUROSCIENCES, 1996, 19 (11) : 473 - 480
  • [33] Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems
    Li, Yi
    Zhong, Yingpeng
    Zhang, Jinjian
    Xu, Lei
    Wang, Qing
    Sun, Huajun
    Tong, Hao
    Cheng, Xiaoming
    Miao, Xiangshui
    SCIENTIFIC REPORTS, 2014, 4
  • [34] Activity-dependent plasticity in descending synaptic inputs to respiratory spinal motoneurons
    Johnson, SM
    Mitchell, GS
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2002, 131 (1-2) : 79 - 90
  • [35] Activity-dependent modulation of hippocampal synaptic plasticity via PirB and endocannabinoids
    Djurisic, Maja
    Brott, Barbara K.
    Saw, Nay L.
    Shamloo, Mehrdad
    Shatz, Carla J.
    MOLECULAR PSYCHIATRY, 2019, 24 (08) : 1206 - 1219
  • [36] The regulation of mitochondrial trafficking in activity-dependent structural synaptic plasticity.
    Insolera, R.
    Wang, R.
    Robertson, E.
    Xie, Y.
    Rivera-Perez, L. M.
    Xiong, X.
    Fridell, Y.
    Collins, C. A.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [37] Activity-dependent GABAergic synaptic plasticity in medial vestibular neurons of rats
    Hu, Huijing
    Lai, S. K.
    Lai, C. H.
    Shum, D. K. Y.
    Chan, Y. S.
    NEUROSCIENCE RESEARCH, 2010, 68 : E343 - E343
  • [38] Role of activity-dependent gene expression of BDNF gene in synaptic plasticity
    Tsuda, Masaaki
    Hara, Daichi
    Yasuda, Makoto
    Fukuchi, Mamoru
    Tabuchi, Akiko
    SEIKAGAKU, 2006, 78 (10): : 998 - 1007
  • [39] ACTIVITY-DEPENDENT NEURONAL GLIAL AND SYNAPTIC PLASTICITY IN THE ADULT MAMMALIAN HYPOTHALAMUS
    THEODOSIS, DT
    POULAIN, DA
    NEUROSCIENCE, 1993, 57 (03) : 501 - 535
  • [40] Activity-dependent synaptic plasticity modulates the critical phase of brain development
    Chaudhury, Sraboni
    Sharma, Vikram
    Kumar, Vivek
    Nag, Tapas C.
    Wadhwa, Shashi
    BRAIN & DEVELOPMENT, 2016, 38 (04): : 355 - 363