On local times, density estimation and supervised classification from functional data

被引:3
|
作者
Llop, P. [1 ]
Forzani, L. [1 ]
Fraiman, R. [2 ]
机构
[1] Univ Nacl Litoral, CONICET, Inst Matemat Aplicada Litoral, RA-3000 Santa Fe, Argentina
[2] Univ San Andres, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Functional data; Density estimation; Nearest neighbors; NONPARAMETRIC ESTIMATE; DISCRIMINANT-ANALYSIS; CONSISTENCY; DEPTH;
D O I
10.1016/j.jmva.2010.08.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we define a root n-consistent nonparametric estimator for the marginal density function of an order one stationary process built up from a sample of i.i.d continuous time trajectories. Under mild conditions we obtain strong consistency, strong orders of convergence and derive the asymptotic distribution of the estimator. We extend some of the results to the non-stationary case. We propose a nonparametric classification rule based on local times (occupation measure) and include some simulations studies. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 50 条