Periodic solutions for a class of non-autonomous Hamiltonian systems

被引:58
作者
Luan, SX [1 ]
Mao, A
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Qufu Normal Univ, Dept Math, Shandong 273165, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; periodic solutions; Cerami condition; local linking;
D O I
10.1016/j.na.2005.01.108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of nontrivial periodic solutions for a superlinear Hamiltonian system: (H) j u - A (t)u + &DEL; H(t, u)=0, u ε R-,(2N) t ε R. We prove an abstract result on the existence of a critical point for a real-valued functional on a Hilbert space via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under the Cerami-type condition instead of Palais-Smale-type condition. In addition, the main assumption here is weaker than the usual Ambrosetti-Rabinowitz-type condition: 0 < μ H(t, u) ≤ u • &DEL; H (t, u). | u| ≥ R > 0. This result extends theorems given by Li and Willem (J. Math. Anal. Appl. 189 (1995) 6-32) and Li and Szulkin (J. Differential Equations 112 (1994) 226-238). © 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1413 / 1426
页数:14
相关论文
共 11 条
[1]   EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE LINEAR PART [J].
ALAMA, S ;
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :89-115
[2]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[3]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[4]  
COTIZELATI V, 2002, J AM MATH SOC, V81, P373
[5]   Multiple solutions for a class of nonlinear Schrodinger equations [J].
Ding, YH ;
Luan, SX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) :423-457
[6]   EXISTENCE AND BIFURCATION OF SOLUTIONS FOR NONLINEAR PERTURBATIONS OF THE PERIODIC SCHRODINGER-EQUATION [J].
HEINZ, HP ;
KUPPER, T ;
STUART, CA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 100 (02) :341-354
[7]   SOLUTIONS IN SPECTRAL GAPS FOR A NONLINEAR EQUATION OF SCHRODINGER TYPE [J].
JEANJEAN, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (01) :53-80
[8]  
Kryszewski W., 1998, Adv. Differ. Equ, V3, P441, DOI DOI 10.57262/ADE/1366399849
[9]   PERIODIC-SOLUTIONS FOR A CLASS OF NONAUTONOMOUS HAMILTONIAN-SYSTEMS [J].
LI, SJ ;
SZULKIN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (01) :226-238
[10]  
RABINOWITZ P, 1986, MATH SCI REGIONAL C, V65