On the convergence of generalized moments in almost sure central limit theorem

被引:49
作者
Ibragimov, I
Lifshits, M
机构
[1] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
[2] Mancomtech Ctr, St Petersburg 197372, Russia
[3] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
关键词
almost sure limit theorems; moments; strong invariance principle;
D O I
10.1016/S0167-7152(98)00134-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {zeta(k)} be the normalized sums corresponding to a sequence of i.i.d. variables with zero mean and unit variance, Define random measures Q(n) = 1/log n (k=1)Sigma(n) 1/k delta(zeta k) and let G be the normal distribution. We show that for each continuous function h satisfying integral h d G < infinity and a mild regularity assumption, one has lim(n-->infinity) integral h d Q(n) = integral h dG a.s. (C) 1998 Elsevier Science B.V. All rights reserved. AMS classification: primary 60F15; secondary 60F05; 60F17; 60B12.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 10 条
[1]   Almost sure central limit theorems under minimal conditions [J].
Berkes, I ;
Csaki, E ;
Horvath, L .
STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) :67-76
[2]   AN ALMOST EVERYWHERE CENTRAL LIMIT-THEOREM [J].
BROSAMLER, GA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 104 :561-574
[3]  
EGOROV VA, 1973, TEOR VER PRIM, V18, P180
[4]   CLUSTERING BEHAVIOR OF FINITE VARIANCE PARTIAL SUM PROCESSES [J].
EINMAHL, U ;
GOODMAN, V .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (04) :547-565
[5]   CONVERGENCE RATES FOR CENTRAL LIMIT THEOREM [J].
FRIEDMAN, N ;
KATZ, M ;
KOOPMANS, LH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 56 (04) :1062-&
[6]  
Ibragimov I. A., 1996, Dokl. Math., V54, P703
[7]  
IBRAGIMOV IA, 1998, UNPUB THEOR PROB APP
[8]   A NOTE ON THE ALMOST SURE CENTRAL-LIMIT-THEOREM [J].
LACEY, MT ;
PHILIPP, W .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) :201-205
[9]   ON STRONG VERSIONS OF THE CENTRAL LIMIT-THEOREM [J].
SCHATTE, P .
MATHEMATISCHE NACHRICHTEN, 1988, 137 :249-256
[10]  
SCHATTE P, 1991, PROBAB MATH STAT-POL, V11, P237