Universal behavior in quantum chaotic dynamics

被引:12
作者
Xiong, H. W. [2 ]
Wu, B. [1 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
基金
美国国家科学基金会;
关键词
quantum chaos; Bose-Einstein condensate; billiard; BOSE-EINSTEIN CONDENSATION; SYSTEMS; GASES; EIGENFUNCTIONS; THERMALIZATION; FLUCTUATIONS;
D O I
10.1002/lapl.201010144
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discover numerically that a moving wave packet in a chaotic billiard will always evolve into a quantum state, whose density probability distribution is exponential. This exponential distribution is found to be universal for quantum chaotic systems with rigorous proof. In contrast, for the corresponding classical system, the distribution is Gaussian. We find that the quantum exponential distribution can smoothly change to the classical Gaussian distribution with coarse graining. This universal dynamical behavior can be observed experimentally with Bose-Einstein condensates. [GRAPHICS] Quantum "random" gas with exponential density distribution (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
引用
收藏
页码:398 / 404
页数:7
相关论文
共 38 条
[1]   Universal scaling in a trapped Fermi super-fluid in the BCS-unitarity crossover [J].
Adhikari, S. K. .
LASER PHYSICS LETTERS, 2009, 6 (12) :901-905
[2]  
[Anonymous], 1974, USPEHI MAT NAUK
[3]  
[Anonymous], 1999, QUANTUM CHAOS INTRO, DOI DOI 10.1017/CBO9780511524622
[4]  
[Anonymous], 1990, CHAOS CLASSICAL QUAN
[5]   Random waves and more:: Eigenfunctions in chaotic and mixed systems [J].
Baecker, A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 145 (1) :161-169
[6]  
Chaudhury S, 2009, NATURE, V461, P768, DOI [10.1038/nature08396, 10.1038/πature08396]
[7]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[8]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049
[9]   Theory of ultracold atomic Fermi gases [J].
Giorgini, Stefano ;
Pitaevskii, Lev P. ;
Stringari, Sandro .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1215-1274
[10]   QUANTUM CHAOS [J].
GUTZWILLER, MC .
SCIENTIFIC AMERICAN, 1992, 266 (01) :78-84