State-of-health estimation for the lithium-ion battery based on support vector regression

被引:166
|
作者
Yang, Duo [1 ]
Wang, Yujie [1 ]
Pan, Rui [1 ]
Chen, Ruiyang [2 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Gifted Young, Hefei 230026, Anhui, Peoples R China
关键词
State estimation; Parameter identification; Least square support vector regression; State-of-health; ELECTRIC VEHICLES; LIFEPO4; BATTERIES; MANAGEMENT-SYSTEM; CHARGE ESTIMATION; PARTICLE FILTER; MODEL; PREDICTION; CAPACITY; ENERGY; NETWORKS;
D O I
10.1016/j.apenergy.2017.08.096
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries have been widely used in many fields. The state-of-health is necessary and important for battery performance evaluation and lifetime prediction. A reliable state-of-health estimation is essential to help batteries work in a safe and suitable condition. In this paper, a novel state-of-health estimation approach is proposed for lithium-ion batteries based on statistical knowledge. An improved battery model, which combines the open-circuit-voltage modeling and the Thevenin equivalent circuit model, is proposed to improve the model accuracy and study the relation between internal parameters and states of the battery. The joint extended Kalman filter-recursive-least squares algorithm is employed to estimate battery state-of-charge and identify the model parameters and open-circuit-voltage simultaneously. Then a particle swarm optimization-least square support vector regression approach is employed to give a reliable state-of-health estimation result with high accuracy and good generalization ability, where the particle swarm optimization algorithm is used to improve the algorithm ability of global optimization. In order to verify the accuracy of the proposed method, static and dynamic current profile tests are carried out on lithium iron phosphate batteries in different aging levels. The experimental results indicate that the proposed method can present suitability for state-of-health estimation with high accuracy.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [21] State-of-health estimation and remaining useful life for lithium-ion battery based on deep learning with Bayesian hyperparameter optimization
    Kong, Depeng
    Wang, Shuhui
    Ping, Ping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) : 6081 - 6098
  • [22] A Balancing Current Ratio Based State-of-Health Estimation Solution for Lithium-Ion Battery Pack
    Tang, Xiaopeng
    Gao, Furong
    Liu, Kailong
    Liu, Qi
    Foley, Aoife M.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (08) : 8055 - 8065
  • [23] A New Lithium-Ion Battery SOH Estimation Method Based on an Indirect Enhanced Health Indicator and Support Vector Regression in PHMs
    Liu, Zhengyu
    Zhao, Jingjie
    Wang, Hao
    Yang, Chao
    ENERGIES, 2020, 13 (04)
  • [24] Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression
    Yin, Deyang
    Zhu, Xiao
    Zhang, Wanjie
    Zheng, Jianfeng
    ENERGIES, 2024, 17 (22)
  • [25] State-of-health estimation of lithium-ion battery based on fractional impedance model and interval capacity
    Yang, Qingxia
    Xu, Jun
    Li, Xiuqing
    Xu, Dan
    Cao, Binggang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 119
  • [26] Combined Meta-Learning With CNN-LSTM Algorithms for State-of-Health Estimation of Lithium-Ion Battery
    Ouyang, Tiancheng
    Su, Yingying
    Wang, Chengchao
    Jin, Song
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2024, 39 (08) : 10106 - 10117
  • [27] Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine
    Feng, Xuning
    Weng, Caihao
    He, Xiangming
    Han, Xuebing
    Lu, Languang
    Ren, Dongsheng
    Ouyang, Minggao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (09) : 8583 - 8592
  • [28] Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries
    Zhao, Zhibin
    Liu, Bingchen
    Wang, Fujin
    Zheng, Shiyu
    Yu, Qiuyu
    Zhai, Zhi
    Chen, Xuefeng
    JOURNAL OF ENERGY STORAGE, 2025, 105
  • [29] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021
  • [30] State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking
    Weng, Caihao
    Feng, Xuning
    Sun, Jing
    Peng, Huei
    APPLIED ENERGY, 2016, 180 : 360 - 368