State-of-health estimation for the lithium-ion battery based on support vector regression

被引:166
|
作者
Yang, Duo [1 ]
Wang, Yujie [1 ]
Pan, Rui [1 ]
Chen, Ruiyang [2 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Gifted Young, Hefei 230026, Anhui, Peoples R China
关键词
State estimation; Parameter identification; Least square support vector regression; State-of-health; ELECTRIC VEHICLES; LIFEPO4; BATTERIES; MANAGEMENT-SYSTEM; CHARGE ESTIMATION; PARTICLE FILTER; MODEL; PREDICTION; CAPACITY; ENERGY; NETWORKS;
D O I
10.1016/j.apenergy.2017.08.096
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries have been widely used in many fields. The state-of-health is necessary and important for battery performance evaluation and lifetime prediction. A reliable state-of-health estimation is essential to help batteries work in a safe and suitable condition. In this paper, a novel state-of-health estimation approach is proposed for lithium-ion batteries based on statistical knowledge. An improved battery model, which combines the open-circuit-voltage modeling and the Thevenin equivalent circuit model, is proposed to improve the model accuracy and study the relation between internal parameters and states of the battery. The joint extended Kalman filter-recursive-least squares algorithm is employed to estimate battery state-of-charge and identify the model parameters and open-circuit-voltage simultaneously. Then a particle swarm optimization-least square support vector regression approach is employed to give a reliable state-of-health estimation result with high accuracy and good generalization ability, where the particle swarm optimization algorithm is used to improve the algorithm ability of global optimization. In order to verify the accuracy of the proposed method, static and dynamic current profile tests are carried out on lithium iron phosphate batteries in different aging levels. The experimental results indicate that the proposed method can present suitability for state-of-health estimation with high accuracy.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [11] State-of-health estimation of lithium-ion batteries based on QPSO-BPNN
    Yao, Yongming
    Li, Fei
    Li, Haofa
    Liu, Junchi
    Wang, Xindi
    Li, Tianyu
    IONICS, 2025, 31 (02) : 1437 - 1449
  • [12] State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
    Bi, Jun
    Zhang, Ting
    Yu, Haiyang
    Kang, Yanqiong
    APPLIED ENERGY, 2016, 182 : 558 - 568
  • [13] A novel deep learning framework for state of health estimation of lithium-ion battery
    Fan, Yaxiang
    Xiao, Fei
    Li, Chaoran
    Yang, Guorun
    Tang, Xin
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [14] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [15] A review of state-of-health estimation for lithium-ion battery packs
    Li, Qingwei
    Song, Renjie
    Wei, Yongqiang
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [16] Online State-of-Health Estimation for the Lithium-Ion Battery Based on An LSTM Neural Network with Attention Mechanism
    Zhang, Jiachang
    Hou, Jie
    Zhang, Zijian
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1334 - 1339
  • [17] State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression
    Wang, Zhenpo
    Ma, Jun
    Zhang, Lei
    IEEE ACCESS, 2017, 5 : 21286 - 21295
  • [18] A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation
    Klass, Verena
    Behm, Marten
    Lindbergh, Goran
    JOURNAL OF POWER SOURCES, 2014, 270 : 262 - 272
  • [19] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [20] State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
    Zhang, Yajun
    Liu, Yajie
    Wang, Jia
    Zhang, Tao
    ENERGY, 2022, 239