Tuning the Density of Zwitterionic Polymer Brushes on PET Fabrics by Aminolysis: Effect on Antifouling Performances

被引:18
作者
Lorusso, Emanuela [1 ,2 ,3 ]
Ali, Wael [2 ,3 ,4 ]
Leniart, Michael [4 ]
Gebert, Beate [4 ]
Oberthuer, Markus [5 ]
Gutmann, Jochen S. [1 ,2 ,3 ,4 ]
机构
[1] Deutsch Textilforsch Zentrum Nord West OP GmbH, D-47798 Krefeld, Germany
[2] Univ Duisburg Essen, Dept Phys Chem, D-45141 Essen, Germany
[3] Univ Duisburg Essen, Ctr Nanointegrat CENIDE, D-45141 Essen, Germany
[4] Deutsch Textilforsch Zentrum Nord West gGmbH, D-47798 Krefeld, Germany
[5] Hsch Angew Wissensch HAW Hamburg, Dept Design, D-22087 Hamburg, Germany
关键词
aminolysis; textiles; PET; functional coatings; polymer brushes; PROTEIN SURFACE INTERACTIONS; LUBRICANT-INFUSED SURFACES; POLY(ETHYLENE GLYCOL); POLYETHYLENE OXIDE; BIOFILMS; DESIGN; RESIST; POLY(ETHYLENE-TEREPHTHALATE); FUNCTIONALIZATION; NANOPARTICLES;
D O I
10.3390/polym12010006
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Here, we synthesize zwitterionic polymer brushes on polyester fabrics by atom transfer radical polymerization (ATRP) after a prefunctionalization step involving an aminolysis reaction with ethylenediamine. Aminolysis is an easy method to achieve homogeneous distributions of functional groups on polyester fibers (PET) fabrics. Varying the polymerization time and the prefunctionalization conditions of the reaction, it is possible to tune the amount of water retained over the surface and study its effect on protein adhesion. This study revealed that the polymerization time plays a major role in preventing protein adhesion on the PET surface.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Fluorescent Multiblock π-Conjugated Polymer Nanoparticles for In Vivo Tumor Targeting [J].
Ahmed, Eilaf ;
Morton, Stephen W. ;
Hammond, Paula T. ;
Swager, Timothy M. .
ADVANCED MATERIALS, 2013, 25 (32) :4504-4510
[2]   Anti-biofilm Agents in Control of Device-Related Infections [J].
Ahmed, Salman ;
Darouiche, Rabih O. .
BIOFILM-BASED HEALTHCARE-ASSOCIATED INFECTIONS, VOL II, 2015, 831 :137-146
[3]  
Al-Sabagh A. M., 2016, Egyptian Journal of Petroleum, V25, P53, DOI 10.1016/j.ejpe.2015.03.001
[4]   Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms [J].
Banerjee, Indrani ;
Pangule, Ravindra C. ;
Kane, Ravi S. .
ADVANCED MATERIALS, 2011, 23 (06) :690-718
[5]   Doxil® - The first FDA-approved nano-drug: Lessons learned [J].
Barenholz, Yechezkel .
JOURNAL OF CONTROLLED RELEASE, 2012, 160 (02) :117-134
[6]   Novel approaches to combat bacterial biofilms [J].
Beloin, Christophe ;
Renard, Stephane ;
Ghigo, Jean-Marc ;
Lebeaux, David .
CURRENT OPINION IN PHARMACOLOGY, 2014, 18 :61-68
[7]   Switchable Antimicrobial and Antifouling Hydrogels with Enhanced Mechanical Properties [J].
Cao, Bin ;
Tang, Qiong ;
Li, Linlin ;
Humble, Jayson ;
Wu, Haiyan ;
Liu, Lingyun ;
Cheng, Gang .
ADVANCED HEALTHCARE MATERIALS, 2013, 2 (08) :1096-1102
[8]   Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles [J].
Cao, Zhiqiang ;
Jiang, Shaoyi .
NANO TODAY, 2012, 7 (05) :404-413
[9]   Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials [J].
Chen, Shenfu ;
Li, Lingyan ;
Zhao, Chao ;
Zheng, Jie .
POLYMER, 2010, 51 (23) :5283-5293
[10]   Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery [J].
Cheng, Jianjun ;
Teply, Benjamin A. ;
Sherifi, Ines ;
Sung, Josephine ;
Luther, Gaurav ;
Gu, Frank X. ;
Levy-Nissenbaum, Etgar ;
Radovic-Moreno, Aleksandar F. ;
Langer, Robert ;
Farokhzad, Omid C. .
BIOMATERIALS, 2007, 28 (05) :869-876