Modeling and Simulation of Nanoindentation

被引:22
作者
Huang, Sixie [1 ]
Zhou, Caizhi [1 ,2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA
[2] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
关键词
DISLOCATION NUCLEATION; ATOMISTIC SIMULATIONS; SURFACE STEP; THIN-FILM; MECHANICAL-PROPERTIES; INCIPIENT PLASTICITY; STACKING-FAULTS; SILICON-NITRIDE; GRAIN-BOUNDARY; 3D SIMULATION;
D O I
10.1007/s11837-017-2541-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.
引用
收藏
页码:2256 / 2263
页数:8
相关论文
共 89 条
[1]   The influence of plastic hardening on surface deformation modes around vickers and spherical indents [J].
Alcalá, J ;
Barone, AC ;
Anglada, M .
ACTA MATERIALIA, 2000, 48 (13) :3451-3464
[2]   Enabling strain hardening simulations with dislocation dynamics [J].
Arsenlis, A. ;
Cai, W. ;
Tang, M. ;
Rhee, M. ;
Oppelstrup, T. ;
Hommes, G. ;
Pierce, T. G. ;
Bulatov, V. V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (06) :553-595
[3]   Atomistic processes of dislocation generation and plastic deformation during nanoindentation [J].
Begau, C. ;
Hartmaier, A. ;
George, E. P. ;
Pharr, G. M. .
ACTA MATERIALIA, 2011, 59 (03) :934-942
[4]  
BELAK J, 1992, NATO ADV SCI I E-APP, V220, P511
[5]   Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy [J].
Bhushan, B ;
Kulkarni, AV ;
Bonin, W ;
Wyrobek, JT .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1996, 74 (05) :1117-1128
[6]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[7]   The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations [J].
Britton, T. B. ;
Liang, H. ;
Dunne, F. P. E. ;
Wilkinson, A. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2115) :695-719
[8]   Multiscale modelling of indentation in FCC metals: From atomic to continuum [J].
Chang, Hyung-Jun ;
Fivel, Marc ;
Rodney, David ;
Verdier, Marc .
COMPTES RENDUS PHYSIQUE, 2010, 11 (3-4) :285-292
[9]   MODEL VALIDATION OF A 3D SIMULATION OF DISLOCATION DYNAMICS - DISCRETIZATION AND LINE TENSION EFFECTS [J].
DEVINCRE, B ;
CONDAT, M .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (10) :2629-2637
[10]   Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal [J].
Eidel, Bernhard .
ACTA MATERIALIA, 2011, 59 (04) :1761-1771