Exact boundary controllability of 3-D Euler equation

被引:68
作者
Glass, O [1 ]
机构
[1] Univ Paris Sud, F-91405 Orsay, France
关键词
controllability; boundary control; Euler equation for ideal incompressible fluids;
D O I
10.1051/cocv:2000100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove the exact boundary controllability of the 3-D Euler equation of incompressible inviscid fluids on a regular connected bounded open set when the control operates on an open part of the boundary that meets any of the connected components of the boundary.
引用
收藏
页码:1 / 44
页数:44
相关论文
共 11 条
[1]  
[Anonymous], 1996, ESAIM CONTR OPTIM CA, DOI DOI 10.1051/COCV:1996102
[2]  
Bardos C., 1975, Lecture Notes in Mathematics, V565, P1
[3]   GLOBAL ASYMPTOTIC STABILIZATION FOR CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
CORON, JM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) :295-312
[4]  
CORON JM, 1993, CR ACAD SCI I-MATH, V317, P271
[5]  
Coron JM, 1996, J MATH PURE APPL, V75, P155
[6]   Exact boundary controllability of 3-D Euler equation of perfect incompresible fluids [J].
Glass, O .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (09) :987-992
[7]  
GLASSE O, 1997, SEMINAIRE EQUATIONS
[8]   CONSTANT DEPENDENCE OF THE NEUMANN-PROBLEM SOLUTION FOR PRAE-MAXWELL EQUATIONS ON THEIR BOUNDARY-VALUES [J].
HERMANN, P ;
KERSTEN, H .
ARCHIV DER MATHEMATIK, 1981, 36 (01) :79-82
[9]  
KAZHIKOV A., 1981, PRIKL MAT MEKH, V44, P672
[10]  
Lions Jacques-Louis, 1990, 9 INRIA INT C ANT JU