Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003-2011

被引:77
作者
Lee, Mihye [1 ]
Kloog, Itai [2 ]
Chudnovsky, Alexandra [3 ]
Lyapustin, Alexei [4 ]
Wang, Yujie [5 ]
Melly, Steven [6 ]
Coull, Brent [7 ]
Koutrakis, Petros [1 ]
Schwartz, Joel [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Exposure Epidemiol & Risk Program, Boston, MA 02115 USA
[2] Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel
[3] Tel Aviv Univ, Dept Geog & Human Environm, IL-69978 Tel Aviv, Israel
[4] NASA, Goddard Space Flight Ctr, GEST UMBC, Baltimore, MD USA
[5] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
[6] Drexel Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Philadelphia, PA 19104 USA
[7] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
empirical/statistical models; exposure modeling; particulate matter; personal exposure; USE REGRESSION-MODELS; LEVEL PM2.5 CONCENTRATIONS; AIR-POLLUTION; MEASUREMENT ERROR; EXPOSURE; EPIDEMIOLOGY; AEROSOL; RETRIEVALS; MORTALITY; MODIS;
D O I
10.1038/jes.2015.41
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Numerous studies have demonstrated that fine particulate matter (PM2.5, particles smaller than 2.5 mu m in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM2.5 to assess personal exposure, however, induces measurement error. Land-use regression provides spatially resolved predictions but land-use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM2.5 exposures. In this paper, we used AOD data with other PM2.5 variables, such as meteorological variables, land-use regression, and spatial smoothing to predict daily concentrations of PM2.5 at a 1-km(2) resolution of the Southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 to 2011. We divided the study area into three regions and applied separate mixed-effect models to calibrate AOD using ground PM2.5 measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R-2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors of 2.89, 2.51, and 2.82 mu g/m(3) for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM2.5 concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM2.5. Our model results will also extend the existing studies on PM2.5 which have mostly focused on urban areas because of the paucity of monitors in rural areas.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 21 条
[1]   Characterization of atmospheric aerosol in the US Southeast from ground- and space-based measurements over the past decade [J].
Alston, E. J. ;
Sokolik, I. N. ;
Kalashnikova, O. V. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (07) :1667-1682
[2]   Effect of measurement error on epidemiological studies of environmental and occupational exposures [J].
Armstrong, BG .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 1998, 55 (10) :651-656
[3]   The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities [J].
Barnett, Adrian G. ;
Williams, Gail M. ;
Schwartz, Joel ;
Best, Trudi L. ;
Neller, Anne H. ;
Petroeschevsky, Anna L. ;
Simpson, Rod W. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2006, 114 (07) :1018-1023
[4]   Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California [J].
Beckerman, Bernardo S. ;
Jerrett, Michael ;
Martin, Randall V. ;
van Donkelaar, Aaron ;
Ross, Zev ;
Burnett, Richard T. .
ATMOSPHERIC ENVIRONMENT, 2013, 77 :172-177
[5]   Development of Land Use Regression Models for Particle Composition in Twenty Study Areas in Europe [J].
de Hoogh, Kees ;
Wang, Meng ;
Adam, Martin ;
Badaloni, Chiara ;
Beelen, Rob ;
Birk, Matthias ;
Cesaroni, Giulia ;
Cirach, Marta ;
Declercq, Christophe ;
Dedele, Audrius ;
Dons, Evi ;
de Nazelle, Audrey ;
Eeftens, Marloes ;
Eriksen, Kirsten ;
Eriksson, Charlotta ;
Fischer, Paul ;
Grazuleviciene, Regina ;
Gryparis, Alexandros ;
Hoffmann, Barbara ;
Jerrett, Michael ;
Katsouyanni, Klea ;
Iakovides, Minas ;
Lanki, Timo ;
Lindley, Sarah ;
Madsen, Christian ;
Moelter, Anna ;
Mosler, Gioia ;
Nador, Gizella ;
Nieuwenhuijsen, Mark ;
Pershagen, Goran ;
Peters, Annette ;
Phuleria, Harisch ;
Probst-Hensch, Nicole ;
Raaschou-Nielsen, Ole ;
Quass, Ulrich ;
Ranzi, Andrea ;
Stephanou, Euripides ;
Sugiri, Dorothea ;
Schwarze, Per ;
Tsai, Ming-Yi ;
Yli-Tuomi, Tarja ;
Varro, Mihaly J. ;
Vienneau, Danielle ;
Weinmayr, Gudrun ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) :5778-5786
[6]   AN ASSOCIATION BETWEEN AIR-POLLUTION AND MORTALITY IN 6 UNITED-STATES CITIES [J].
DOCKERY, DW ;
POPE, CA ;
XU, XP ;
SPENGLER, JD ;
WARE, JH ;
FAY, ME ;
FERRIS, BG ;
SPEIZER, FE .
NEW ENGLAND JOURNAL OF MEDICINE, 1993, 329 (24) :1753-1759
[7]   Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies [J].
Goldman, Gretchen T. ;
Mulholland, James A. ;
Russell, Armistead G. ;
Strickland, Matthew J. ;
Klein, Mitchel ;
Waller, Lance A. ;
Tolbert, Paige E. .
ENVIRONMENTAL HEALTH, 2011, 10
[8]   10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data [J].
Hu, X. ;
Waller, L. A. ;
Lyapustin, A. ;
Wang, Y. ;
Liu, Y. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (12) :6301-6314
[9]   Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model [J].
Hu, Xuefei ;
Waller, Lance A. ;
Lyapustin, Alexei ;
Wang, Yujie ;
Al-Hamdan, Mohammad Z. ;
Crosson, William L. ;
Estes, Maurice G., Jr. ;
Estes, Sue M. ;
Quattrochi, Dale A. ;
Puttaswamy, Sweta Jinnagara ;
Liu, Yang .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :220-232
[10]   Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression [J].
Hu, Xuefei ;
Waller, Lance A. ;
Al-Hamdan, Mohammad Z. ;
Crosson, William L. ;
Estes, Maurice G., Jr. ;
Estes, Sue M. ;
Quattrochi, Dale A. ;
Sarnat, Jeremy A. ;
Liu, Yang .
ENVIRONMENTAL RESEARCH, 2013, 121 :1-10