A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping)

被引:184
作者
Arts, Josje H. E. [1 ]
Hadi, Mackenzie [2 ]
Irfan, Muhammad-Adeel [3 ]
Keene, Athena M. [4 ]
Kreiling, Reinhard [5 ]
Lyon, Delina [6 ]
Maier, Monika [7 ]
Michel, Karin [8 ]
Petry, Thomas [9 ]
Sauer, Ursula G. [10 ]
Warheit, David [11 ]
Wiench, Karin [3 ]
Wohlleben, Wendel [3 ]
Landsiedel, Robert [3 ]
机构
[1] AkzoNobel, Technol & Engn, Arnhem, Netherlands
[2] Shell Int BV, Shell Hlth, The Hague, Netherlands
[3] BASF SE, D-67056 Ludwigshafen, Germany
[4] Afton Chem, Richmond, VA USA
[5] Clariant Prod GmbH, Sulzbach, Germany
[6] Shell Oil Co, Shell Hlth, Houston, TX 77252 USA
[7] Evonik Degussa GmbH, Hanau, Germany
[8] Henkel AG & Co KGaA, Dusseldorf, Germany
[9] Toxminds BVBA, Brussels, Belgium
[10] Sci Consultancy Anim Welf, Neubiberg, Germany
[11] DuPont Haskell Global Ctr HES, Newark, DE USA
关键词
Nanomaterials; Grouping; Read-across; Intrinsic material properties; System-dependent properties; Biopersistence; Biodistribution; Cellular effects; Apical toxic effects; Risk assessment; SHORT-TERM INHALATION; OCCUPATIONAL-EXPOSURE LIMITS; BIOLOGICAL OXIDATIVE DAMAGE; CERIUM OXIDE NANOPARTICLES; IN-VITRO; CARBON NANOTUBES; TITANIUM-DIOXIDE; GOLD NANOPARTICLES; CELLULAR UPTAKE; PHYSICOCHEMICAL PROPERTIES;
D O I
10.1016/j.yrtph.2015.03.007
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources. (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:S1 / S27
页数:27
相关论文
共 194 条
[21]   In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility [J].
Brunner, Tobias J. ;
Wick, Peter ;
Manser, Pius ;
Spohn, Philipp ;
Grass, Robert N. ;
Limbach, Ludwig K. ;
Bruinink, Arie ;
Stark, Wendelin J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (14) :4374-4381
[22]  
BSI, 2007, 669922007 BSI PD
[23]   Effects of SiO2, ZrO2, and BaSO4 nanomaterials with or without surface functionalization upon 28-day oral exposure to rats [J].
Buesen, Roland ;
Landsiedel, Robert ;
Sauer, Ursula G. ;
Wohlleben, Wendel ;
Groeters, Sibylle ;
Strauss, Volker ;
Kamp, Hennicke ;
van Ravenzwaay, Bennard .
ARCHIVES OF TOXICOLOGY, 2014, 88 (10) :1881-1906
[24]   A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles [J].
Burello, Enrico ;
Worth, Andrew P. .
NANOTOXICOLOGY, 2011, 5 (02) :228-235
[25]   Nanoparticle Surface Characterization and Clustering through Concentration-Dependent Surface Adsorption Modeling [J].
Chen, Ran ;
Zhang, Yuntao ;
Sahneh, Faryad Darabi ;
Scoglio, Caterina M. ;
Wohlleben, Wendel ;
Haase, Andrea ;
Monteiro-Riviere, Nancy A. ;
Riviere, Jim E. .
ACS NANO, 2014, 8 (09) :9446-9456
[26]   Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration [J].
Cho, Wan-Seob ;
Kang, Byeong-Cheol ;
Lee, Jong Kwon ;
Jeong, Jayoung ;
Che, Jeong-Hwan ;
Seok, Seung Hyeok .
PARTICLE AND FIBRE TOXICOLOGY, 2013, 10
[27]   Rapid translocation of nanoparticles from the lung airspaces to the body [J].
Choi, Hak Soo ;
Ashitate, Yoshitomo ;
Lee, Jeong Heon ;
Kim, Soon Hee ;
Matsui, Aya ;
Insin, Numpon ;
Bawendi, Moungi G. ;
Semmler-Behnke, Manuela ;
Frangioni, John V. ;
Tsuda, Akira .
NATURE BIOTECHNOLOGY, 2010, 28 (12) :1300-U113
[28]   Tissue- and Organ-Selective Biodistribution of NIR Fluorescent Quantum Dots [J].
Choi, Hak Soo ;
Ipe, Binil Itty ;
Misra, Preeti ;
Lee, Jeong Heon ;
Bawendi, Moungi G. ;
Frangioni, John V. .
NANO LETTERS, 2009, 9 (06) :2354-2359
[29]   Cytotoxicity in the age of nano: The role of fourth period transition metal oxide nanoparticle physicochemical properties [J].
Chusuei, Charles C. ;
Wu, Chi-Heng ;
Mallavarapu, Shravan ;
Hou, Fang Yao Stephen ;
Hsu, Chen-Ming ;
Winiarz, Jeffrey G. ;
Aronstarn, Robert S. ;
Huang, Yue-Wern .
CHEMICO-BIOLOGICAL INTERACTIONS, 2013, 206 (02) :319-326
[30]   An integrated approach for the in vitro dosimetry of engineered nanomaterials [J].
Cohen, Joel M. ;
Teeguarden, Justin G. ;
Demokritou, Philip .
PARTICLE AND FIBRE TOXICOLOGY, 2014, 11