The Littlewood-Offord problem and invertibility of random matrices

被引:225
作者
Rudelson, Mark [2 ]
Vershynin, Roman [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
random matrices; singular values; condition number; small ball probability; Littlewood-Offord problem;
D O I
10.1016/j.aim.2008.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two basic conjectures on the distribution of the smallest singular value of random n x n matrices with independent entries. Under minimal moment assumptions, we show that the smallest singular value is of order n(-1/2), which is optimal for Gaussian matrices. Moreover, we give a optimal estimate on the tail probability. This comes as a consequence of a new and essentially sharp estimate in the Littlewood-Offord problem: for i.i.d. random variables X-k and real numbers a(k), determine the probability p that the Sum Sigma(k)a(k)X(k) lies near some number v. For arbitrary coefficients a(k) of the same order of magnitude, we show that they essentially lie in an arithmetic progression of length 1/p. Published by Elsevier Inc.
引用
收藏
页码:600 / 633
页数:34
相关论文
共 33 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 1991, ERGEB MATH GRENZGEB
[3]  
[Anonymous], 1963, COLLECTED WORKS
[4]   A NOTE ON THE LARGEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
SILVERSTEIN, JW ;
YIN, YQ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 26 (02) :166-168
[5]  
BOLLOBAS B, 1986, COMBINATORIES SET SY
[6]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[7]  
Davidson KR, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P317, DOI 10.1016/S1874-5849(01)80010-3
[8]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[9]   EIGENVALUES AND CONDITION NUMBERS OF RANDOM MATRICES [J].
EDELMAN, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (04) :543-560
[10]   ON A LEMMA OF LITTLEWOOD AND OFFORD [J].
ERDOS, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (12) :898-902