Homogenization and boundary layers in domains of finite type

被引:5
作者
Zhuge, Jinping [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Convergence rates; finite type; homogenization; oscillating Dirichlet problem; FOURIER-ANALYSIS; PERIODIC HOMOGENIZATION;
D O I
10.1080/03605302.2018.1446160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the homogenization of Dirichlet problem of elliptic systems in a bounded, smooth domain of finite type. Both the coecients of the elliptic operator and the Dirichlet boundary data are assumed to be periodic and rapidly oscillating. We prove the theorem of homogenization and obtain an algebraic rate of convergence that depends explicitly on dimension and the type of the domain.
引用
收藏
页码:549 / 584
页数:36
相关论文
共 23 条
[21]   On moments of negative eigenvalues for the Pauli operator [J].
Shen, ZW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (02) :292-327
[22]  
Stein E. M., 1993, Monographs in Harmonic Analysis III, V43
[23]  
Stein Elias M., 1993, MONOGRAPHS HARMONIC, V43