Homogenization and boundary layers in domains of finite type

被引:5
作者
Zhuge, Jinping [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Convergence rates; finite type; homogenization; oscillating Dirichlet problem; FOURIER-ANALYSIS; PERIODIC HOMOGENIZATION;
D O I
10.1080/03605302.2018.1446160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the homogenization of Dirichlet problem of elliptic systems in a bounded, smooth domain of finite type. Both the coecients of the elliptic operator and the Dirichlet boundary data are assumed to be periodic and rapidly oscillating. We prove the theorem of homogenization and obtain an algebraic rate of convergence that depends explicitly on dimension and the type of the domain.
引用
收藏
页码:549 / 584
页数:36
相关论文
共 23 条
[11]   Multidimensional van der Corput and sublevel set estimates [J].
Carbery, A ;
Christ, M ;
Wright, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :981-1015
[12]   Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data [J].
Choi, Sunhi ;
Kim, Inwon C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (02) :419-448
[13]   Quantitative homogenization of elliptic partial differential equations with random oscillatory boundary data [J].
Feldman, William M. ;
Kim, Inwon C. ;
Souganidis, Panagiotis E. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (04) :958-1002
[14]   Homogenization of the oscillating Dirichlet boundary condition in general domains [J].
Feldman, William M. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05) :599-622
[15]   Homogenization and boundary layers [J].
Gerard-Varet, David ;
Masmoudi, Nader .
ACTA MATHEMATICA, 2012, 209 (01) :133-178
[16]   Homogenization in polygonal domains [J].
Gerard-Varet, David ;
Masmoudi, Nader .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (05) :1477-1503
[17]   Periodic Homogenization of Green and Neumann Functions [J].
Kenig, Carlos E. ;
Lin, Fanghua ;
Shen, Zhongwei .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (08) :1219-1262
[18]   ASYMPTOTIC ANALYSIS OF BOUNDARY LAYER CORRECTORS IN PERIODIC HOMOGENIZATION [J].
Prange, Christophe .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) :345-387
[19]  
[Ружанский Михаил Владимирович Ruzhanskii Mikhail Vladimirovich], 2009, [Функциональный анализ и его приложения, Functional Analysis and Its Applications, Funktsional'nyi analiz i ego prilozheniya], V43, P91, DOI 10.4213/faa2937
[20]   Boundary Layers in Periodic Homogenization of Neumann Problems [J].
Shen, Zhongwei ;
Zhuge, Jinping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (11) :2163-2219