Homogenization and boundary layers in domains of finite type

被引:5
作者
Zhuge, Jinping [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Convergence rates; finite type; homogenization; oscillating Dirichlet problem; FOURIER-ANALYSIS; PERIODIC HOMOGENIZATION;
D O I
10.1080/03605302.2018.1446160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the homogenization of Dirichlet problem of elliptic systems in a bounded, smooth domain of finite type. Both the coecients of the elliptic operator and the Dirichlet boundary data are assumed to be periodic and rapidly oscillating. We prove the theorem of homogenization and obtain an algebraic rate of convergence that depends explicitly on dimension and the type of the domain.
引用
收藏
页码:549 / 584
页数:36
相关论文
共 23 条
  • [1] SLOW CONVERGENCE IN PERIODIC HOMOGENIZATION PROBLEMS FOR DIVERGENCE-TYPE ELLIPTIC OPERATORS
    Aleksanyan, Hayk
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (05) : 3345 - 3382
  • [2] Applications of Fourier Analysis in Homogenization of the Dirichlet Problem: Lp Estimates
    Aleksanyan, Hayk
    Shahgholian, Henrik
    Sjolin, Per
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (01) : 65 - 87
  • [3] Applications of Fourier Analysis in Homogenization of Dirichlet Problem III: Polygonal Domains
    Aleksanyan, Hayk
    Shahgholian, Henrik
    Sjolin, Per
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (03) : 524 - 546
  • [4] Applications of Fourier analysis in homogenization of Dirichlet problem I. Pointwise estimates
    Aleksanyan, Hayk
    Shahgholian, Henrik
    Sjolin, Per
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2626 - 2637
  • [5] Allaire G., 1999, ESAIM: Control, Optimisation and Calculus of Variations, V4, P209, DOI 10.1051/cocv:1999110
  • [6] [Anonymous], 2003, SOBOLEV SPACES
  • [7] Quantitative Analysis of Boundary Layers in Periodic Homogenization
    Armstrong, Scott
    Kuusi, Tuomo
    Mourrat, Jean-Christophe
    Prange, Christophe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (02) : 695 - 741
  • [8] COMPACTNESS METHODS IN THE THEORY OF HOMOGENIZATION
    AVELLANEDA, M
    LIN, FH
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (06) : 803 - 847
  • [9] Bensoussan Alain, 1978, STUD MATH APPL, V5
  • [10] CONVEX HYPERSURFACES AND FOURIER-TRANSFORMS
    BRUNA, J
    NAGEL, A
    WAINGER, S
    [J]. ANNALS OF MATHEMATICS, 1988, 127 (02) : 333 - 365