RADEMACHER-GAUSSIAN TAIL COMPARISON FOR COMPLEX COEFFICIENTS AND RELATED PROBLEMS

被引:1
|
作者
Chasapis, Giorgos [1 ]
Liu, Ruoyuan [2 ]
Tkocz, Tomasz [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
  Sums of independent random variables; Rademacher random variable; Gaussian random variable; Spherically symmetric random vector; Tail comparison; BOUNDS; PRODUCT; SUMS;
D O I
10.1090/proc/15718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a generalisation of Pinelis' Rademacher-Gaussian tail comparison to complex coefficients. We also establish uniform bounds on the probability that the magnitude of weighted sums of independent random vectors uniform on Euclidean spheres with matrix coefficients exceeds its second moment.
引用
收藏
页码:1339 / 1349
页数:11
相关论文
共 3 条
  • [1] A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON
    Nayar, Piotr
    Tkocz, Tomasz
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (01) : 413 - 419
  • [2] On a multidimensional spherically invariant extension of the Rademacher-Gaussian comparison
    Pinelis, Iosif
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [3] Problems involving combinations of coefficients for the inverse of some complex-valued analytical functions
    Tang, Huo
    Abbas, Muhammad
    Alhefthi, Reem K.
    Arif, Muhammad
    AIMS MATHEMATICS, 2024, 9 (10): : 28931 - 28954