Localization for a class of discrete long-range quasi-periodic operators

被引:5
作者
Shi, Yunfeng [1 ]
Wen, Li [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
基金
国家重点研发计划;
关键词
KAM method; Quasi-periodic operators; Localization; Long-range hopping; SCHRODINGER-OPERATORS; NU;
D O I
10.1007/s11005-022-01581-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study discrete quasi-periodic operators with certain long-range hopping and monotonic meromorphic potentials. The hopping amplitude decays with the interparticle distance vertical bar n vertical bar as e(-rlogt(1+vertical bar n vertical bar )) (t > 1, r > 0, n is an element of Z(v)). By employing the KAM method, we prove such operators have pure point spectrum with eigenfunctions {phi(i)}(i)(is an element of Zv) obeying vertical bar phi(i)(n)vertical bar <= 2e(-r/2)log(t)(1+vertical bar n-i vertical bar) for all i is an element of Z(v), n is an element of Z(v).
引用
收藏
页数:18
相关论文
共 12 条
[1]   LOCALIZATION IN NU-DIMENSIONAL INCOMMENSURATE STRUCTURES [J].
BELLISSARD, J ;
LIMA, R ;
SCOPPOLA, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (04) :465-477
[2]   METHODS OF KAM-THEORY FOR LONG-RANGE QUASI-PERIODIC OPERATORS ON Z-NU - PURE POINT SPECTRUM [J].
CHULAEVSKY, VA ;
DINABURG, EI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (03) :559-577
[4]  
Dinaburg E.I., 1975, Funct. Anal. Appl, V9, P8
[5]   Discrete one-dimensional quasi-periodic Schrodinger operators with pure point spectrum [J].
Eliasson, LH .
ACTA MATHEMATICA, 1997, 179 (02) :153-196
[6]   LOCALIZATION IN AN INCOMMENSURATE POTENTIAL - AN EXACTLY SOLVABLE MODEL [J].
GREMPEL, DR ;
FISHMAN, S ;
PRANGE, RE .
PHYSICAL REVIEW LETTERS, 1982, 49 (11) :833-836
[7]   SMALL DIVISORS WITH SPATIAL STRUCTURE IN INFINITE DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
POSCHEL, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (02) :351-393
[9]   SPECTRAL BEHAVIOR OF QUASI PERIODIC POTENTIALS [J].
SARNAK, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (03) :377-401
[10]  
Shi YF, 2022, Arxiv, DOI arXiv:2201.07405