Schrodinger operators with negative potentials and Lane-Emden densities

被引:6
作者
Brasco, Lorenzo [1 ,2 ]
Franzina, Giovanni [3 ]
Ruffini, Berardo [4 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, I-44121 Ferrara, Italy
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, 39 Rue Frederic Joliot Curie, F-13453 Marseille, France
[3] Sapienza Univ Roma, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, F-34095 Montpellier 5, France
关键词
Schrodinger operators; Ground state energy; Hardy inequalities; Lane-Emden equation; UNIQUENESS;
D O I
10.1016/j.jfa.2017.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Schrodinger operator -Delta+V for negative potentials V, on open sets with positive first eigenvalue of the Dirichlet-Laplacian. We show that the spectrum of -Delta+V is positive, provided that V is greater than a negative multiple of the logarithmic gradient of the solution to the Lane-Emden equation -Delta u = u(q-1) (for some 1 <= q < 2). In this case, the ground state energy of -Delta+V is greater than the first eigenvalue of the Dirichlet-Laplacian, up to an explicit multiplicative factor. This is achieved by means of suitable Hardy-type inequalities, that we prove in this paper. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1825 / 1863
页数:39
相关论文
共 17 条