Probabilistic eigensolver with a trapped-ion quantum processor

被引:9
作者
Zhang, Jing-Ning [1 ,2 ]
Arrazola, Inigo [3 ]
Casanova, Jorge [3 ,4 ]
Lamata, Lucas [3 ,5 ]
Kim, Kihwan [2 ]
Solano, Enrique [3 ,4 ,6 ,7 ,8 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[2] Tsinghua Univ, Ctr Quantum Informat, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[3] Univ Basque Country, Dept Phys Chem, UPV EHU, Apdo 644, Bilbao 48080, Spain
[4] Basque Fdn Sci, Ikerbasque, Maria Diaz de Haro 3, Bilbao 48013, Spain
[5] Univ Seville, Dept Fis Atom Mol & Nucl, Seville 41080, Spain
[6] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[7] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[8] IQM, Munich, Germany
基金
中国国家自然科学基金;
关键词
STATE; COMPUTATION; SIMULATION;
D O I
10.1103/PhysRevA.101.052333
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Preparing the eigenstate, especially the ground state, of a complex Hamiltonian is of great importance in quantum simulations. Many proposals have been introduced and experimentally realized, among which are quantum variational eigensolver and heat-bath algorithmic cooling, with the former hindered by local minima and the latter lacking of complex system Hamiltonians. Here we introduce a dissipative quantum-classical hybrid scheme, the probabilistic eigensolver. The scheme repeatedly uses an ancilla qubit to acquire information on the system, based on which it postselectively lowers the average energy of the system. The optimal reduction is achieved through classical optimization with a single variational parameter. We describe the implementation of the probabilistic eigensolver with trapped-ion systems and demonstrate the performance by numerically simulating the ground-state preparation of several paradigmatic models, including the Rabi and the Hubbard models. We believe the scheme would enrich the functionalities of universal quantum simulators and be useful as a module for various quantum-computation tasks.
引用
收藏
页数:11
相关论文
共 59 条
[21]   Quantum Algorithm for Linear Systems of Equations [J].
Harrow, Aram W. ;
Hassidim, Avinatan ;
Lloyd, Seth .
PHYSICAL REVIEW LETTERS, 2009, 103 (15)
[22]   Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator [J].
Hempel, Cornelius ;
Maier, Christine ;
Romero, Jonathan ;
McClean, Jarrod ;
Monz, Thomas ;
Shen, Heng ;
Jurcevic, Petar ;
Lanyon, Ben P. ;
Love, Peter ;
Babbush, Ryan ;
Aspuru-Guzik, Alan ;
Blatt, Rainer ;
Roos, Christian F. .
PHYSICAL REVIEW X, 2018, 8 (03)
[24]   About the Pauli's equivalence prohibited. [J].
Jordan, P. ;
Wigner, E. .
ZEITSCHRIFT FUR PHYSIK, 1928, 47 (9-10) :631-651
[25]   Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets [J].
Kandala, Abhinav ;
Mezzacapo, Antonio ;
Temme, Kristan ;
Takita, Maika ;
Brink, Markus ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2017, 549 (7671) :242-246
[26]   Preparation of entangled states by quantum Markov processes [J].
Kraus, B. ;
Buechler, H. P. ;
Diehl, S. ;
Kantian, A. ;
Micheli, A. ;
Zoller, P. .
PHYSICAL REVIEW A, 2008, 78 (04)
[27]   Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling [J].
Langford, N. K. ;
Sagastizabal, R. ;
Kounalakis, M. ;
Dickel, C. ;
Bruno, A. ;
Luthi, F. ;
Thoen, D. J. ;
Endo, A. ;
DiCarlo, L. .
NATURE COMMUNICATIONS, 2017, 8
[28]   Universal Digital Quantum Simulation with Trapped Ions [J].
Lanyon, B. P. ;
Hempel, C. ;
Nigg, D. ;
Mueller, M. ;
Gerritsma, R. ;
Zaehringer, F. ;
Schindler, P. ;
Barreiro, J. T. ;
Rambach, M. ;
Kirchmair, G. ;
Hennrich, M. ;
Zoller, P. ;
Blatt, R. ;
Roos, C. F. .
SCIENCE, 2011, 334 (6052) :57-61
[29]   Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force [J].
Leung, Pak Hong ;
Landsman, Kevin A. ;
Figgatt, Caroline ;
Linke, Norbert M. ;
Monroe, Christopher ;
Brown, Kenneth R. .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[30]   Nondeterministic ultrafast ground-state cooling of a mechanical resonator [J].
Li, Yong ;
Wu, Lian-Ao ;
Wang, Ying-Dan ;
Yang, Li-Ping .
PHYSICAL REVIEW B, 2011, 84 (09)