Probabilistic eigensolver with a trapped-ion quantum processor

被引:9
作者
Zhang, Jing-Ning [1 ,2 ]
Arrazola, Inigo [3 ]
Casanova, Jorge [3 ,4 ]
Lamata, Lucas [3 ,5 ]
Kim, Kihwan [2 ]
Solano, Enrique [3 ,4 ,6 ,7 ,8 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[2] Tsinghua Univ, Ctr Quantum Informat, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[3] Univ Basque Country, Dept Phys Chem, UPV EHU, Apdo 644, Bilbao 48080, Spain
[4] Basque Fdn Sci, Ikerbasque, Maria Diaz de Haro 3, Bilbao 48013, Spain
[5] Univ Seville, Dept Fis Atom Mol & Nucl, Seville 41080, Spain
[6] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[7] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[8] IQM, Munich, Germany
基金
中国国家自然科学基金;
关键词
STATE; COMPUTATION; SIMULATION;
D O I
10.1103/PhysRevA.101.052333
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Preparing the eigenstate, especially the ground state, of a complex Hamiltonian is of great importance in quantum simulations. Many proposals have been introduced and experimentally realized, among which are quantum variational eigensolver and heat-bath algorithmic cooling, with the former hindered by local minima and the latter lacking of complex system Hamiltonians. Here we introduce a dissipative quantum-classical hybrid scheme, the probabilistic eigensolver. The scheme repeatedly uses an ancilla qubit to acquire information on the system, based on which it postselectively lowers the average energy of the system. The optimal reduction is achieved through classical optimization with a single variational parameter. We describe the implementation of the probabilistic eigensolver with trapped-ion systems and demonstrate the performance by numerically simulating the ground-state preparation of several paradigmatic models, including the Rabi and the Hubbard models. We believe the scheme would enrich the functionalities of universal quantum simulators and be useful as a module for various quantum-computation tasks.
引用
收藏
页数:11
相关论文
共 59 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]   Analog quantum simulation of generalized Dicke models in trapped ions [J].
Aedo, Ibai ;
Lamata, Lucas .
PHYSICAL REVIEW A, 2018, 97 (04)
[3]  
[Anonymous], 2021, Modern quantum mechanics
[4]   Digital-Analog Quantum Simulation of Spin Models in Trapped Ions [J].
Arrazola, Inigo ;
Pedernales, Julen S. ;
Lamata, Lucas ;
Solano, Enrique .
SCIENTIFIC REPORTS, 2016, 6
[5]   Quantum algorithm for nonhomogeneous linear partial differential equations [J].
Arrazola, Juan Miguel ;
Kalajdzievski, Timjan ;
Weedbrook, Christian ;
Lloyd, Seth .
PHYSICAL REVIEW A, 2019, 100 (03)
[6]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[7]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[8]   Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance [J].
Baugh, J ;
Moussa, O ;
Ryan, CA ;
Nayak, A ;
Laflamme, R .
NATURE, 2005, 438 (7067) :470-473
[9]   Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Ostrander, Aaron ;
Wang, Guoming .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) :1057-1081
[10]   Algorithmic cooling and scalable NMR quantum computers [J].
Boykin, PO ;
Mor, T ;
Roychowdhury, V ;
Vatan, F ;
Vrijen, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) :3388-3393