NORM PRESERVERS OF JORDAN PRODUCTS

被引:5
作者
Kuzma, Bojan [1 ,2 ]
Lesnjak, Gorazd [2 ,3 ]
Li, Chi-Kwong [4 ]
Petek, Tatjana [2 ,3 ]
Rodman, Leiba [4 ]
机构
[1] Fac Math Nat Sci & Informat Technol, Koper 6000, Slovenia
[2] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Elect Engn & Comp Sci, SLO-2000 Maribor, Slovenia
[4] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
美国国家科学基金会;
关键词
Jordan product; Matrix norm; Nonlinear preservers; ISOMORPHISMS; MAPS;
D O I
10.13001/1081-3810.1484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Norm preserver maps of Jordan product on the algebra M(n) of n x n complex matrices are studied, with respect to various norms. A description of such surjective maps with respect to the Frobenius norm is obtained: Up to a suitable scaling and unitary similarity, they are given by one of the four standard maps (identity, transposition, complex conjugation, and conjugate transposition) on M(n), except for a set of normal matrices; on the exceptional set they are given by another standard map. For many other norms, it is proved that, after a suitable reduction, norm preserver maps of Jordan product transform every normal matrix to its scalar multiple, or to a scalar multiple of its conjugate transpose.
引用
收藏
页码:959 / 978
页数:20
相关论文
共 8 条
[1]   Mappings that preserve pairs of operators with zero triple Jordan product [J].
Dobovisek, M. ;
Kuzma, B. ;
Lesnjak, G. ;
Li, C. K. ;
Petek, T. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :255-279
[2]   C*-isomorphisms, Jordan isomorphisms, and numerical range preserving maps [J].
Gau, Hwa-Long ;
Li, Chi-Kwong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :2907-2914
[3]   PRESERVING ZEROS OF A POLYNOMIAL [J].
Guterman, A. E. ;
Kuzma, B. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (11) :4038-4064
[4]   Jordan isomorphisms and maps preserving spectra of certain operator products [J].
Hou, Jinchuan ;
Li, Chi-Kwong ;
Wong, Ngai-Ching .
STUDIA MATHEMATICA, 2008, 184 (01) :31-47
[5]   Maps preserving the spectrum of generalized Jordan product of operators [J].
Hou, Jinchuan ;
Li, Chi-Kwong ;
Wong, Ngai-Ching .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (04) :1049-1069
[6]   Conditions for Linear Dependence of Two Operators [J].
Kuzma, Bojan ;
Lesnjak, Gorazd ;
Li, Chi-Kwong ;
Petek, Tatjana ;
Rodman, Leiba .
TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 :411-+
[7]   PRESERVERS FOR NORMS OF LIE PRODUCT [J].
Li, Chi-Kwong ;
Poon, Edward ;
Sze, Nung-Sing .
OPERATORS AND MATRICES, 2009, 3 (02) :187-203
[8]  
So W., 1990, LINEAR MULTILINEAR A, V27, P207, DOI DOI 10.1080/03081089008818012