Band Signatures for Strong Nonlinear Hall Effect in Bilayer WTe2

被引:187
作者
Du, Z. Z. [1 ,2 ,3 ,4 ]
Wang, C. M. [1 ,2 ,3 ,5 ]
Lu, Hai-Zhou [1 ,2 ,3 ]
Xie, X. C. [6 ,7 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Southeast Univ, Sch Phys, Nanjing 211189, Jiangsu, Peoples R China
[5] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
[6] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[7] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION; PHASE;
D O I
10.1103/PhysRevLett.121.266601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unconventional responses upon breaking discrete or crystal symmetries open avenues for exploring emergent physical systems and materials. By breaking inversion symmetry, a nonlinear Hall signal can be observed, even in the presence of time-reversal symmetry, quite different from the conventional Hall effects. Low-symmetry two-dimensional materials are promising candidates for the nonlinear Hall effect, but it is less known when a strong nonlinear Hall signal can be measured, in particular, its connections with the band-structure properties. By using model analysis, we find prominent nonlinear Hall signals near tilted band anticrossings and band inversions. These band signatures can be used to explain the strong nonlinear Hall effect in the recent experiments on two-dimensional WTe2. This Letter will be instructive not only for analyzing the transport signatures of the nonlinear Hall effect but also for exploring unconventional responses in emergent materials.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Large, non-saturating magnetoresistance in WTe2 [J].
Ali, Mazhar N. ;
Xiong, Jun ;
Flynn, Steven ;
Tao, Jing ;
Gibson, Quinn D. ;
Schoop, Leslie M. ;
Liang, Tian ;
Haldolaarachchige, Neel ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
NATURE, 2014, 514 (7521) :205-+
[2]   Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides XP2 (X = Mo, W) [J].
Autes, G. ;
Gresch, D. ;
Troyer, M. ;
Soluyanov, A. A. ;
Yazyev, O. V. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]  
Facio J. I., PHYS REV LETT
[5]  
Fan Z, 2015, CHINESE PHYS B, V24
[6]   Ferroelectric switching of a two-dimensional metal [J].
Fei, Zaiyao ;
Zhao, Wenjin ;
Palomaki, Tauno A. ;
Sun, Bosong ;
Miller, Moira K. ;
Zhao, Zhiying ;
Yan, Jiaqiang ;
Xu, Xiaodong ;
Cobden, David H. .
NATURE, 2018, 560 (7718) :336-+
[7]  
Fei ZY, 2017, NAT PHYS, V13, P677, DOI [10.1038/NPHYS4091, 10.1038/nphys4091]
[8]  
Kang K., ARXIV180908744
[9]   Quantum Transport in Magnetic Topological Insulator Thin Films [J].
Lu, Hai-Zhou ;
Zhao, An ;
Shen, Shun-Qing .
PHYSICAL REVIEW LETTERS, 2013, 111 (14)
[10]   Massive Dirac fermions and spin physics in an ultrathin film of topological insulator [J].
Lu, Hai-Zhou ;
Shan, Wen-Yu ;
Yao, Wang ;
Niu, Qian ;
Shen, Shun-Qing .
PHYSICAL REVIEW B, 2010, 81 (11)