Spontaneously reactive plasma polymer micropatterns

被引:13
作者
Mishra, Gautam [2 ]
Easton, Christopher D. [1 ]
Fowler, Gregory J. S. [2 ]
McArthur, Sally L. [1 ]
机构
[1] Swinburne Univ Technol, IRIS, Fac Engn & Ind Sci, Hawthorn, Vic 3122, Australia
[2] Univ Sheffield, Kroto Res Inst, Dept Mat Engn, Sheffield S3 7HQ, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Photolithographic patterning; Plasma polymer; Bioarray; MICROARRAY SURFACES; PROTEIN ADSORPTION; MALEIC-ANHYDRIDE; TOF-SSIMS; BIOMATERIALS; DEPOSITION; FILMS; IMMOBILIZATION; ARRAYS;
D O I
10.1016/j.polymer.2011.03.004
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A combination of spontaneous reactive chemical domains bounded by non-fouling zones provides a means to covalently immobilize biomolecules in structured, spatially defined arrays. These arrays have application in a wide range of biotechnologies including tissue engineering, proteomics, and diagnostics. In this paper, we describe the fabrication of multi-chemistry micropatterns from plasma polymers. X-ray photoelectron spectroscopy (XPS), together with Time-of-Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) and confocal imaging has been utilized to confirm the reactivity and integrity of micropatterns fabricated from amine-reactive maleic anhydride (ppMA) on non-fouling tetraglyme (ppTg). The covalent immobilization of antibodies via the formation of amide linkages with the anhydride groups occurs only in the ppMA domains, while antibody activity is confirmed via their ability to attract specific fluorescent antigens. These micropatterns therefore provide a convenient and effective platform for covalently immobilizing biomolecules in spatially defined areas without the need for multiple step wet chemical immobilization strategies. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1882 / 1890
页数:9
相关论文
共 34 条
[1]   Mass spectral investigation of the radio-frequency plasma deposition of hexamethyldisiloxane [J].
Alexander, MR ;
Jones, FR ;
Short, RD .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (18) :3614-3619
[2]   Plasma copolymerization as a route to the fabrication of new surfaces with controlled amounts of specific chemical functionality [J].
Beck, AJ ;
Jones, FR ;
Short, RD .
POLYMER, 1996, 37 (24) :5537-5539
[3]   Protein patterning [J].
Blawas, AS ;
Reichert, WM .
BIOMATERIALS, 1998, 19 (7-9) :595-609
[4]   Plasma-surface modification of biomaterials [J].
Chu, PK ;
Chen, JY ;
Wang, LP ;
Huang, N .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2002, 36 (5-6) :143-206
[5]   Synthesis of Allylamine Plasma Polymer Films: Correlation between Plasma Diagnostic and Film Characteristics [J].
Denis, Laurent ;
Cossement, Damien ;
Godfroid, Thomas ;
Renaux, Fabian ;
Bittencourt, Carla ;
Snyders, Rony ;
Hecq, Michel .
PLASMA PROCESSES AND POLYMERS, 2009, 6 (03) :199-208
[6]   Stable plasma-deposited acrylic acid surfaces for cell culture applications [J].
Detomaso, L ;
Gristina, R ;
Senesi, GS ;
d'Agostino, R ;
Favia, P .
BIOMATERIALS, 2005, 26 (18) :3831-3841
[7]   An optical biosensor for monitoring recombinant proteins in process media [J].
Disley, DM ;
Morrill, PR ;
Sproule, K ;
Lowe, CR .
BIOSENSORS & BIOELECTRONICS, 1999, 14 (05) :481-493
[8]   Fabrication and characterisation of polymer thin-films derived from cineole using radio frequency plasma polymerisation [J].
Easton, Christopher D. ;
Jacob, Mohan V. ;
Shanks, Robert A. .
POLYMER, 2009, 50 (15) :3465-3469
[9]   Novel plasma processes for biomaterials: micro-scale patteming of biomedical polymers [J].
Favia, P ;
Sardella, E ;
Gristina, R ;
d'Agostino, R .
SURFACE & COATINGS TECHNOLOGY, 2003, 169 :707-711
[10]   Recent and expected roles of plasma-polymerized films for biomedical applications [J].
Foerch, Renate ;
Chifen, Anye N. ;
Bousquet, Angelique ;
Khor, Hwei Ling ;
Jungblut, Melanie ;
Chu, Li-Qiang ;
Zhang, Zhihong ;
Osey-Mensah, Ivy ;
Sinner, Eva-Katrin ;
Knoll, Wolfgang .
CHEMICAL VAPOR DEPOSITION, 2007, 13 (6-7) :280-294