Remarks on an integral functional driven by sub-fractional Brownian motion

被引:17
作者
Shen, Guangjun [2 ,3 ]
Yan, Litan [1 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[3] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
关键词
Sub-fractional Brownian motion; Local time; Self-intersection local time; p-variation; Stochastic area integrals; LOCAL TIME; RESPECT;
D O I
10.1016/j.jkss.2010.12.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the functionals A(1) (t, x) = integral(t)(0) 1([0,infinity))(x - S-s(H))ds, A(2)(t, x) = integral(t)(0) 1([0,infinity))(x - S-s(H))s(2H-1)ds, where (S-t(H))(0 <= t <= T) is a one-dimension sub-fractional Brownian motion with index H is an element of (0, 1). It shows that there exists a constant P-H is an element of (1, 2) such that p-variation of the process A(j)(t, S-t(H)) - integral(t)(0) L-j(s, S-s(H))dS(s)(H) (j = 1, 2) is equal to 0 if p > p(H), where L-j = 1, 2, are the local time and weighted local time of S-H, respectively. This extends the classical results for Brownian motion. (C) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:337 / 346
页数:10
相关论文
共 50 条
[21]   Continuity in law with respect to the Hurst index of some additive functionals of sub-fractional Brownian motion [J].
Ait Ouahra, M. ;
Sghir, A. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (04) :677-690
[22]   Mixed sub-fractional Brownian motionD [J].
Zili, Mounir .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (03) :163-178
[23]   STOCHASTIC INTEGRAL FOR NON-ADAPTED PROCESSES RELATED TO SUB-FRACTIONAL BROWNIAN MOTION WHEN H > 1/2 [J].
Amel, Belhadj ;
Abdeldjebbar, Kandouci ;
Angelika, Bouchentouf Amina .
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (02) :165-176
[24]   Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation [J].
Kuang, Nenghui ;
Liu, Bingquan .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) :778-789
[25]   Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion [J].
Kuang, Nenghui ;
Xie, Huantian .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) :215-229
[26]   An approximate approach to fuzzy stochastic differential equations under sub-fractional Brownian motion [J].
Jafari, Hossein ;
Farahani, Hamed .
STOCHASTICS AND DYNAMICS, 2023, 23 (03)
[27]   REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES [J].
申广君 ;
陈超 ;
闫理坦 .
ActaMathematicaScientia, 2011, 31 (05) :1860-1876
[28]   Pricing geometric asian power options in the sub-fractional brownian motion environment * [J].
Wang, Wei ;
Cai, Guanghui ;
Tao, Xiangxing .
CHAOS SOLITONS & FRACTALS, 2021, 145
[29]   Instrumental variable estimation for stochastic differential equations linear in drift parameter and driven by a sub-fractional Brownian motion [J].
Rao, B. L. S. Prakasa .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) :600-612
[30]   Fuzzy simulation of European option pricing using sub-fractional Brownian motion [J].
Bian, Liu ;
Li, Zhi .
CHAOS SOLITONS & FRACTALS, 2021, 153