Development and Characterization of Titanium Dioxide Ceramic Substrates with High Dielectric Permittivities

被引:13
作者
Freitas, Antonio E. [1 ,2 ]
Manhabosco, Taise M. [3 ]
Batista, Ronaldo J. C. [3 ]
Rego Segundo, Alan K. [4 ]
Araujo, Humberto X. [5 ]
Araujo, Fernando Gabriel S. [3 ]
Costa, Adilson R. [1 ]
机构
[1] Univ Fed Ouro Preto, Ctr Hist, LESTA, REDEMAT, BR-35400000 Ouro Preto, Brazil
[2] Univ Fed Sao Joao del Rei, Dept Tecnol Engn Civil Computacao & Humanidades D, Campus Alto Paraopeba, BR-36301158 Ouro Branco, Brazil
[3] Univ Fed Ouro Preto, Dept Fis DEFIS REDEMAT, Campus Univ Morro Cruzeiro, BR-35400000 Ouro Preto, Brazil
[4] Univ Fed Ouro Preto, Dept Engn Controle & Automacao DECAT, Campus Univ Morro Cruzeiro, BR-35400000 Ouro Preto, Brazil
[5] Univ Fed Tocantins, Colegiado Engn Eletr, BR-77600000 Palmas, Brazil
关键词
titanium dioxide; ceramic substrate; permittivity; solid state sintering; porosity; GRAIN-SIZE; DESIGN;
D O I
10.3390/ma13020386
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium dioxide substrates have been synthesized by means of solid-state reactions with sintering temperatures varying from 1150 degrees C up to 1350 degrees C. X-ray diffraction and scanning electron microscopy (SEM) where employed to investigate the crystal structure, grain size and porosity of the resulting samples. The obtained ceramics are tetragonal (rutile phase) with average grain sizes varying from 2.94 mu m up to 5.81 mu m. The average grain size of samples increases with increasing temperature, while the porosity decreases. The effect of microstructure on the dielectric properties has been also studied. The reduction of porosity of samples significantly improves the dielectric parameters (relative dielectric permittivity and loss tangent) in comparison to those of commercial substrates, indicating that the obtained ceramic substrates could be useful in the miniaturization of telecommunication devices.
引用
收藏
页数:10
相关论文
共 33 条
[11]  
De Araujo H.X., 2019, Prz. Elektrotechniczny, V95, P108, DOI [10.15199/48.2019.02.25, DOI 10.15199/48.2019.02.25]
[12]  
Deschamps GeorgesA., 1953, P 3 S USAF ANTENNA R, P18
[13]  
Filho RC, 2009, IEEE ANTENNAS PROP, P1648, DOI 10.1109/APS.2009.5171958
[14]   Ceramic microwave antennas for mobile applications [J].
Ghosh, IS ;
Hilgers, A ;
Schlenker, T ;
Porath, R .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (15) :2621-2628
[15]   SINTERING CHARACTERISTICS OF NANOCRYSTALLINE TIO2 [J].
HAHN, H ;
LOGAS, J ;
AVERBACK, RS .
JOURNAL OF MATERIALS RESEARCH, 1990, 5 (03) :609-614
[16]   New considerations in the design of microstrip antennas [J].
Herscovici, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1998, 46 (06) :807-812
[17]   MICROSTRIP ANTENNAS [J].
HOWELL, JQ .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1975, AP23 (01) :90-93
[18]   Design and Fabrication of a Compact 3-Dimensional Stacked Type Dielectric Ceramic Waveguide Bandpass Filter [J].
Jang, Youngsoo ;
Kim, Jongchel ;
Kim, Seungwan ;
Lee, Kiejin .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (10) :665-667
[19]   Dielectric permittivity and loss of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas [J].
Kretly, LC ;
Almeida, AFL ;
Fechine, PBA ;
de Oliveira, RS ;
Sombra, ASB .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2004, 15 (10) :657-663
[20]   A review of ceramic sintering and suggestions on reducing sintering temperatures [J].
Kuang, X ;
Carotenuto, G ;
Nicolais, L .
ADVANCED PERFORMANCE MATERIALS, 1997, 4 (03) :257-274