Maximal directions of monotonicity of an aggregation function

被引:8
作者
De Baets, B. [1 ]
De Meyer, H. [2 ]
机构
[1] Univ Ghent, Dept Data Anal & Math Modelling, KERMIT, Coupure Links 653, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281, B-9000 Ghent, Belgium
关键词
Aggregation function; Concave; convex level curve; Copula; Directional monotonicity; Maximal direction of monotonicity; QUASI-COPULAS; SECTIONS;
D O I
10.1016/j.fss.2021.02.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the concept of maximal directions of increasingness (resp. decreasingness) of an aggregation function. In the bivariate case, we derive these maximal directions with respect to points on the main diagonal of the unit square for a symmetric aggregation function that has either piecewise convex or piecewise concave level curves and is differentiable up to second order. With any bivariate aggregation function of the latter type we associate another bivariate aggregation function that has the same maximal directions of increasingness (resp. decreasingness) while having straight lines as level curves. We explore under which conditions the latter aggregation function is a semi-copula, a quasi-copula or a copula. As a by-product we establish a new construction method for aggregation functions with given diagonal section. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 78
页数:25
相关论文
共 32 条
  • [1] Multivariate upper semilinear copulas
    Arias-Garcia, J. J.
    De Meyer, H.
    De Baets, B.
    [J]. INFORMATION SCIENCES, 2016, 360 : 289 - 300
  • [2] Beliakov G, 2016, STUD FUZZ SOFT COMP, V329, P1, DOI 10.1007/978-3-319-24753-3
  • [3] Three types of monotonicity of averaging functions
    Beliakov, Gleb
    Calvo, Tomasa
    Wilkin, Tim
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 72 : 114 - 122
  • [4] On some classes of directionally monotone functions
    Bustince, H.
    Mesiar, R.
    Kolesarova, A.
    Dimuro, G. P.
    Fernandez, J.
    Diaz, I
    Montes, S.
    [J]. FUZZY SETS AND SYSTEMS, 2020, 386 : 161 - 178
  • [5] Directional monotonicity of fusion functions
    Bustince, H.
    Fernandez, J.
    Kolesarova, A.
    Mesiar, R.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 244 (01) : 300 - 308
  • [6] Ordered Directionally Monotone Functions: Justification and Application
    Bustince, Humberto
    Barrenechea, Edurne
    Sesma-Sara, Mikel
    Lafuente, Julio
    Pereira Dimuro, Gracaliz
    Mesiar, Radko
    Kolesarova, Anna
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (04) : 2237 - 2250
  • [7] Calvo T, 2002, STUD FUZZ SOFT COMP, V97, P3
  • [8] De Baets B, 2007, KYBERNETIKA, V43, P221
  • [9] On a family of copulas constructed from the diagonal section
    Durante, F
    Mesiar, R
    Sempi, C
    [J]. SOFT COMPUTING, 2006, 10 (06) : 490 - 494
  • [10] Durante F, 2005, KYBERNETIKA, V41, P315