Prospective evaluation of a breast-cancer risk model integrating classical risk factors and polygenic risk in 15 cohorts from six countries

被引:45
作者
Hurson, Amber N. [1 ,2 ]
Choudhury, Parichoy Pal [1 ,3 ]
Gao, Chi [4 ,5 ]
Huesing, Anika [6 ]
Eriksson, Mikael [7 ]
Shi, Min [8 ]
Jones, Michael E. [9 ]
Evans, D. Gareth R. [10 ,11 ]
Milne, Roger L. [12 ,13 ,14 ]
Gaudet, Mia M. [15 ]
Vachon, Celine M. [16 ]
Chasman, Daniel, I [17 ,18 ]
Easton, Douglas F. [19 ,20 ]
Schmidt, Marjanka K. [21 ,22 ]
Kraft, Peter [4 ,5 ]
Garcia-Closas, Montserrat [1 ]
Chatterjee, Nilanjan [23 ,24 ]
机构
[1] NCI, Div Canc Epidemiol & Genet, Rockville, MD USA
[2] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27515 USA
[3] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[4] Harvard TH Chan Sch Publ Hlth, Program Genet Epidemiol & Stat Genet, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[6] German Canc Res Ctr, Div Canc Epidemiol, Heidelberg, Germany
[7] Karolinska Univ Hosp, Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[8] NIEHS, Biostat & Computat Biol Branch, NIH, POB 12233, Res Triangle Pk, NC 27709 USA
[9] Inst Canc Res, Div Genet & Epidemiol, London, England
[10] Univ Manchester, Manchester Acad Hlth Sci Ctr, Fac Biol Med & Hlth, Div Evolut & Genom Med,Sch Biol Sci, Manchester, Lancs, England
[11] Manchester Univ Hosp NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester NIHR Biomed Res Ctr, Manchester Ctr Genom Med,St Marys Hosp, Manchester, Lancs, England
[12] Canc Council Victoria, Canc Epidemiol Div, Melbourne, Vic, Australia
[13] Univ Melbourne, Ctr Epidemiol & Biostat, Melbourne Sch Populat & Global Hlth, Melbourne, Vic, Australia
[14] Monash Univ, Monash Hlth, Sch Clin Sci, Precis Med, Clayton, Vic, Australia
[15] Amer Canc Soc, Behav & Epidemiol Res Grp, Atlanta, GA 30329 USA
[16] Mayo Clin, Div Epidemiol, Dept Hlth Sci Res, Rochester, MN USA
[17] Brigham & Womens Hosp, Div Prevent Med, 75 Francis St, Boston, MA 02115 USA
[18] Harvard Med Sch, Boston, MA 02115 USA
[19] Univ Cambridge, Ctr Canc Genet Epidemiol, Dept Oncol, Cambridge, England
[20] Univ Cambridge, Ctr Canc Genet Epidemiol, Dept Publ Hlth & Primary Care, Cambridge, England
[21] Antoni van Leeuwenhoek Hosp, Netherlands Canc Inst, Div Mol Pathol, Amsterdam, Netherlands
[22] Antoni van Leeuwenhoek Hosp, Netherlands Canc Inst, Div Psychosocial Res & Epidemiol, Amsterdam, Netherlands
[23] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Baltimore, MD USA
[24] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD USA
基金
美国国家卫生研究院; 英国医学研究理事会; 澳大利亚国家健康与医学研究理事会; 加拿大健康研究院;
关键词
Breast cancer; iCARE; model validation; polygenic risk score; risk prediction; risk stratification; PREDICTION MODELS; POPULATION; WOMEN; VALIDATION; SUBTYPES; WHITE;
D O I
10.1093/ije/dyab036
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Rigorous evaluation of the calibration and discrimination of breast-cancer risk-prediction models in prospective cohorts is critical for applications under clinical guidelines. We comprehensively evaluated an integrated model incorporating classical risk factors and a 313-variant polygenic risk score (PRS) to predict breast-cancer risk. Methods: Fifteen prospective cohorts from six countries with 239 340 women (7646 incident breast-cancer cases) of European ancestry aged 19-75 years were included. Calibration of 5-year risk was assessed by comparing expected and observed proportions of cases overall and within risk categories. Risk stratification for women of European ancestry aged 50-70 years in those countries was evaluated by the proportion of women and future cases crossing clinically relevant risk thresholds. Results: Among women <50 years old, the median (range) expected-to-observed ratio for the integrated model across 15 cohorts was 0.9 (0.7-1.0) overall and 0.9 (0.7-1.4) at the highest-risk decile; among women >= 50 years old, these were 1.0 (0.7-1.3) and 1.2 (0.7-1.6), respectively. The proportion of women identified above a 3% 5-year risk threshold (used for recommending risk-reducing medications in the USA) ranged from 7.0% in Germany (similar to 841 000 of 12 million) to 17.7% in the USA (similar to 5.3 of 30 million). At this threshold, 14.7% of US women were reclassified by adding the PRS to classical risk factors, with identification of 12.2% of additional future cases. Conclusion: Integrating a 313-variant PRS with classical risk factors can improve the identification of European-ancestry women at elevated risk who could benefit from targeted risk-reducing strategies under current clinical guidelines.
引用
收藏
页码:1897 / 1911
页数:15
相关论文
共 50 条
[1]  
[Anonymous], 2013, FAM BREAST CANC CLAS
[2]   A response to "Personalised medicine and population health: breast and ovarian cancer" [J].
Antoniou, Antonis ;
Anton-Culver, Hoda ;
Borowsky, Alexander ;
Broeders, Mireille ;
Brooks, Jennifer ;
Chiarelli, Anna ;
Chiquette, Jocelyne ;
Cuzick, Jack ;
Delaloge, Suzette ;
Devilee, Peter ;
Dorval, Michael ;
Easton, Douglas ;
Eisen, Andrea ;
Eklund, Martin ;
Eloy, Laurence ;
Esserman, Laura ;
Garcia-Closas, Montserrat ;
Goldgar, David ;
Hall, Per ;
Knoppers, Bartha Maria ;
Kraft, Peter ;
La Croix, Andrea ;
Madalensky, Lisa ;
Mavaddat, Nasim ;
Mittman, Nicole ;
Nabi, Hermann ;
Olopade, Olufunmilayo ;
Pashayan, Nora ;
Schmidt, Marjanka ;
Shieh, Yiwey ;
Simard, Jacques ;
Stover-Fiscallini, Allison ;
Tice, Jeffrey A. ;
van't Veer, Laura ;
Wenger, Neil ;
Wolfson, Michael ;
Yau, Christina ;
Ziv, Elad .
HUMAN GENETICS, 2019, 138 (03) :287-289
[3]   Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women [J].
Banegas, Matthew P. ;
John, Esther M. ;
Slattery, Martha L. ;
Gomez, Scarlett Lin ;
Yu, Mandi ;
LaCroix, Andrea Z. ;
Pee, David ;
Chlebowski, Rowan T. ;
Hines, Lisa M. ;
Thompson, Cynthia A. ;
Gail, Mitchell H. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2017, 109 (02)
[4]   Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis [J].
Bareche, Y. ;
Venet, D. ;
Ignatiadis, M. ;
Aftimos, P. ;
Piccart, M. ;
Rothe, F. ;
Sotiriou, C. .
ANNALS OF ONCOLOGY, 2018, 29 (04) :895-902
[5]   Population Genetics: Why structure matters [J].
Barton, Nick ;
Hermisson, Joachim ;
Nordborg, Magnus .
ELIFE, 2019, 8
[6]  
Borenstein M, 2009, Introduction to Meta-Analysis, DOI [10.1002/9780470743386, DOI 10.1002/9780470743386]
[7]   Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density [J].
Brentnall, Adam R. ;
Cuzick, Jack ;
Buist, Diana S. M. ;
Bowles, Erin J. Aiello .
JAMA ONCOLOGY, 2018, 4 (09)
[8]   Reproductive profiles and risk of breast cancer subtypes: a multi-center case-only study [J].
Brouckaert, Olivier ;
Rudolph, Anja ;
Laenen, Annouschka ;
Keeman, Renske ;
Bolla, Manjeet K. ;
Wang, Qin ;
Soubry, Adelheid ;
Wildiers, Hans ;
Andrulis, Irene L. ;
Arndt, Volker ;
Beckmann, Matthias W. ;
Benitez, Javier ;
Blomqvist, Carl ;
Bojesen, Stig E. ;
Brauch, Hiltrud ;
Brennan, Paul ;
Brenner, Hermann ;
Chenevix-Trench, Georgia ;
Choi, Ji-Yeob ;
Cornelissen, Sten ;
Couch, Fergus J. ;
Cox, Angela ;
Cross, Simon S. ;
Czene, Kamila ;
Eriksson, Mikael ;
Fasching, Peter A. ;
Figueroa, Jonine ;
Flyger, Henrik ;
Giles, Graham G. ;
Gonzalez-Neira, Anna ;
Guenel, Pascal ;
Hall, Per ;
Hollestelle, Antoinette ;
Hopper, John L. ;
Ito, Hidemi ;
Jones, Michael ;
Kang, Daehee ;
Knight, Julia A. ;
Knight, Julia A. ;
Kosma, Veli-Matti ;
Li, Jingmei ;
Lindblom, Annika ;
Lilyquist, Jenna ;
Lophatananon, Artitaya ;
Mannermaa, Arto ;
Manoukian, Siranoush ;
Margolin, Sara ;
Matsuo, Keitaro ;
Muir, Kenneth ;
Nevanlinna, Heli .
BREAST CANCER RESEARCH, 2017, 19
[9]   Developing and evaluating polygenic risk prediction models for stratified disease prevention [J].
Chatterjee, Nilanjan ;
Shi, Jianxin ;
Garcia-Closas, Montserrat .
NATURE REVIEWS GENETICS, 2016, 17 (07) :392-406
[10]   iCARE: An R package to build, validate and apply absolute risk models [J].
Choudhury, Parichoy Pal ;
Maas, Paige ;
Wilcox, Amber ;
Wheeler, William ;
Brook, Mark ;
Check, David ;
Garcia-Closas, Montserrat ;
Chatterjee, Nilanjan .
PLOS ONE, 2020, 15 (02)