The Jones polynomial and graphs on surfaces

被引:90
作者
Dasbach, Oliver T. [1 ]
Futer, David [2 ]
Kalfagianni, Efstratia [2 ]
Lin, Xiao-Song
Stoltzfus, Neal W. [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
knots; links; ribbon graphs; Jones polynomial; Kauffman bracket; Tutte polynomial; Bollobas-Riordan-Tutte polynomial;
D O I
10.1016/j.jctb.2007.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Jones polynomial of an alternating link is a certain specialization of the Tutte polynomial of the (planar) checkerboard graph associated to an alternating projection of the link. The Bollobas-Riordan-Tutte polynomial generalizes the Tutte polynomial of graphs to graphs that are embedded in closed oriented surfaces of higher genus. In this paper we show that the Jones polynomial of any link can be obtained from the Bollobas-Riordan-Tutte polynomial of a certain oriented ribbon graph associated to a link projection. We give some applications of this approach. (C) 2007 Published by Elsevier Inc.
引用
收藏
页码:384 / 399
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 1998, TOPOLOGICAL METHODS
[2]   The spread and extreme terms of Jones polynomials [J].
Bae, Y ;
Morton, HR .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2003, 12 (03) :359-373
[3]  
Birman JS, 2005, HANDBOOK OF KNOT THEORY, P19, DOI 10.1016/B978-044451452-3/50003-4
[4]   A polynomial of graphs on surfaces [J].
Bollobás, B ;
Riordan, O .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :81-96
[5]   A polynomial invariant of graphs on orientable surfaces [J].
Bollobás, B ;
Riordan, O .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :513-531
[6]  
CHMUTOV S, 2004, MATHGT0404475
[7]   THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE BOLLOBAS-RIORDAN POLYNOMIAL [J].
Chmutov, Sergei ;
Pak, Igor .
MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (03) :409-418
[8]  
Cori R., 1992, EXPO MATH, V10, P403
[9]  
Cori R., 1992, EXPO MATH, V10, P449
[10]  
Cori R., 1992, EXPO MATH, V10, P429