A New Multi-Atlas Registration Framework for Multimodal Pathological Images Using Conventional Monomodal Normal Atlases

被引:23
作者
Tang, Zhenyu [1 ,2 ,3 ]
Yap, Pew-Thian [1 ,2 ]
Shen, Dinggang [1 ,2 ,4 ]
机构
[1] Univ N Carolina, Dept Radiol, CB 7510, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, BRIC, Chapel Hill, NC 27599 USA
[3] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
[4] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Image registration; multimodal image; pathological brain image; image synthesis; low-rank image recovery; LOW-RANK; SEGMENTATION; NORMALIZATION;
D O I
10.1109/TIP.2018.2884563
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using multi-atlas registration (MAR), information carried by atlases can be transferred onto a new input image for the tasks of region-of-interest (ROI) segmentation, anatomical landmark detection, and so on. Conventional atlases used in MAR methods are monomodal and contain only normal anatomical structures. Therefore, the majority of MAR methods cannot handle input multimodal pathological images, which are often collected in routine image-based diagnosis. This is because registering monomodal atlases with normal appearances to multimodal pathological images involves two major problems: 1) missing imaging modalities in the monomodal atlases and 2) influence from pathological regions. In this paper, we propose a new MAR framework to tackle these problems. In this framework, deep learning-based image synthesizers are applied for synthesizing multimodal normal atlases from conventional monomodal normal atlases. To reduce the influence from pathological regions, we further propose a multimodal low-rank approach to recover multimodal normal-looking images from multimodal pathological images. Finally, the multimodal normal atlases can be registered to the recovered multimodal images in a multi-channel way. We evaluate our MAR framework via brain ROI segmentation of multimodal tumor brain images. Due to the utilization of multimodal information and the reduced influence from pathological regions, experimental results show that registration based on our method is more accurate and robust, leading to significantly improved brain ROI segmentation compared with the state-of-the-art methods.
引用
收藏
页码:2293 / 2304
页数:12
相关论文
共 42 条
  • [31] Construction of a 3D probabilistic atlas of human cortical structures
    Shattuck, David W.
    Mirza, Mubeena
    Adisetiyo, Vitria
    Hojatkashani, Cornelius
    Salamon, Georges
    Narr, Katherine L.
    Poldrack, Russell A.
    Bilder, Robert M.
    Toga, Arthur W.
    [J]. NEUROIMAGE, 2008, 39 (03) : 1064 - 1080
  • [32] PelVis: Atlas-based Surgical Planning for Oncological Pelvic Surgery
    Smit, Noeska
    Lawonn, Kai
    Kraima, Annelot
    DeRuiter, Marco
    Sokooti, Hessam
    Bruckner, Stefan
    Eisemann, Elmar
    Vilanova, Anna
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 741 - 750
  • [33] An overlap invariant entropy measure of 3D medical image alignment
    Studholme, C
    Hill, DLG
    Hawkes, DJ
    [J]. PATTERN RECOGNITION, 1999, 32 (01) : 71 - 86
  • [34] Thirion J P, 1998, Med Image Anal, V2, P243, DOI 10.1016/S1361-8415(98)80022-4
  • [35] Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
    van der Lijn, Fedde
    den Heijer, Tom
    Breteler, Monique M. B.
    Niessen, Wiro J.
    [J]. NEUROIMAGE, 2008, 43 (04) : 708 - 720
  • [36] Multi-Atlas Segmentation with Joint Label Fusion
    Wang, Hongzhi
    Suh, Jung W.
    Das, Sandhitsu R.
    Pluta, John B.
    Craige, Caryne
    Yushkevich, Paul A.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (03) : 611 - 623
  • [37] A generative probability model of joint label fusion for multi-atlas based brain segmentation
    Wu, Guorong
    Wang, Qian
    Zhang, Daoqiang
    Nie, Feiping
    Huang, Heng
    Shen, Dinggang
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (06) : 881 - 890
  • [38] CLASSIC: Consistent longitudinal alignment and segmentation for serial image computing
    Xue, Z
    Shen, DG
    Davatzikos, C
    [J]. NEUROIMAGE, 2006, 30 (02) : 388 - 399
  • [39] Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping
    Xue, Zhong
    Shen, Dinggang
    Davatzikos, Christos
    [J]. MEDICAL IMAGE ANALYSIS, 2006, 10 (05) : 740 - 751
  • [40] Yang JZ, 2008, LECT NOTES COMPUT SC, V5242, P905, DOI 10.1007/978-3-540-85990-1_109