Cauchy transform on nonrectifiable surfaces in Clifford analysis

被引:11
作者
Abreu-Blaya, R. [2 ]
Bory-Reyes, J. [1 ]
Moreno-Garcia, T. [2 ]
机构
[1] Univ Oriente, Dept Matemat, Santiago De Cuba, Cuba
[2] Univ Holguin, Fac Informat & Matemat, Holguin, Cuba
关键词
Cauchy transform; Clifford analysis; rectifiability;
D O I
10.1016/j.jmaa.2007.06.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of reconstructing a monogenic Clifford algebra valued function on the boundary F of a general open set Omega in Rn+1 from a prescribed jump data u over the boundary is deeply connected with the study of the Clifford-Cauchy transform [GRAPHICS] Necessary and sufficient condition on non-rectifiable F is established guaranteeing the existence of continuous boundary values of this transform for all functions satisfying a Holder type condition. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 19 条
[1]  
Abreu Blaya R., 2003, ADV APPL CLIFFORD AL, V13, P133
[2]   The Clifford-Cauchy transform with a continuous density: N. Davydov's theorem [J].
Abreu-Blaya, R ;
Bory-Reyes, J ;
Gerus, OF ;
Shapiro, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (07) :811-825
[3]  
Abreu-Blaya R., 2006, Wavelets, P1, DOI [10.1007/3-7643-7588-4_1, DOI 10.1007/3-7643-7588-4_1]
[4]  
Abreu-Blaya R, 2007, J GEOM ANAL, V17, P1
[5]  
Brackx F., 1982, Clifford Analysis
[6]  
David G., 1993, Mathematical Monographs and Surveys, V38
[7]  
Dynkin E. M., 1980, SOV MATH DOKL, V250:4, p[794, 199]
[8]  
DYNKIN E. M., 1979, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. AN Steklov. (LOMI), V92, P115
[9]  
FEDERER F, 1969, GRUNDLEHREN MATH WIS, V153
[10]  
GILBERT RP, 1983, 1 ORDER ELLIPTIC SYS