A NEW H(div)-CONFORMING p-INTERPOLATION OPERATOR IN TWO DIMENSIONS

被引:5
作者
Bespalov, Alexei [1 ]
Heuer, Norbert [2 ,3 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Pontificia Univ Catolica Chile, ANESTOC, Santiago, Chile
[3] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2011年 / 45卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
p-interpolation; error estimation; Maxwell's equations; boundary element method; EDGE FINITE-ELEMENTS; FIELD INTEGRAL-EQUATION; DISCRETE COMPACTNESS; VERSION; BOUNDARY; APPROXIMATION; DOMAINS; SPACES;
D O I
10.1051/m2an/2010039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only H(r) (K) boolean AND (H) over tilde (-1/2) (div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space (H) over tilde (-1/2) (div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions.
引用
收藏
页码:255 / 275
页数:21
相关论文
共 26 条